These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 25767248)
1. De novo assembly and annotation of the Asian tiger mosquito (Aedes albopictus) repeatome with dnaPipeTE from raw genomic reads and comparative analysis with the yellow fever mosquito (Aedes aegypti). Goubert C; Modolo L; Vieira C; ValienteMoro C; Mavingui P; Boulesteix M Genome Biol Evol; 2015 Mar; 7(4):1192-205. PubMed ID: 25767248 [TBL] [Abstract][Full Text] [Related]
2. A draft genome sequence of an invasive mosquito: an Italian Aedes albopictus. Dritsou V; Topalis P; Windbichler N; Simoni A; Hall A; Lawson D; Hinsley M; Hughes D; Napolioni V; Crucianelli F; Deligianni E; Gasperi G; Gomulski LM; Savini G; Manni M; Scolari F; Malacrida AR; ArcĂ B; Ribeiro JM; Lombardo F; Saccone G; Salvemini M; Moretti R; Aprea G; Calvitti M; Picciolini M; Papathanos PA; Spaccapelo R; Favia G; Crisanti A; Louis C Pathog Glob Health; 2015 Jul; 109(5):207-20. PubMed ID: 26369436 [TBL] [Abstract][Full Text] [Related]
3. ATon, abundant novel nonautonomous mobile genetic elements in yellow fever mosquito (Aedes aegypti). Yang G; Wong A; Rooke R BMC Genomics; 2012 Jun; 13():283. PubMed ID: 22738224 [TBL] [Abstract][Full Text] [Related]
4. A transposable element annotation pipeline and expression analysis reveal potentially active elements in the microalga Tisochrysis lutea. Berthelier J; Casse N; Daccord N; Jamilloux V; Saint-Jean B; Carrier G BMC Genomics; 2018 May; 19(1):378. PubMed ID: 29783941 [TBL] [Abstract][Full Text] [Related]
5. TERAD: Extraction of transposable element composition from RADseq data. Chak STC; Rubenstein DR Mol Ecol Resour; 2019 Nov; 19(6):1681-1688. PubMed ID: 31479576 [TBL] [Abstract][Full Text] [Related]
6. Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Ou S; Su W; Liao Y; Chougule K; Agda JRA; Hellinga AJ; Lugo CSB; Elliott TA; Ware D; Peterson T; Jiang N; Hirsch CN; Hufford MB Genome Biol; 2019 Dec; 20(1):275. PubMed ID: 31843001 [TBL] [Abstract][Full Text] [Related]
8. Transposome: a toolkit for annotation of transposable element families from unassembled sequence reads. Staton SE; Burke JM Bioinformatics; 2015 Jun; 31(11):1827-9. PubMed ID: 25644271 [TBL] [Abstract][Full Text] [Related]
9. Genomic composition and evolution of Aedes aegypti chromosomes revealed by the analysis of physically mapped supercontigs. Timoshevskiy VA; Kinney NA; deBruyn BS; Mao C; Tu Z; Severson DW; Sharakhov IV; Sharakhova MV BMC Biol; 2014 Apr; 12():27. PubMed ID: 24731704 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of morabine grasshopper genomes reveals highly abundant transposable elements and rapidly proliferating satellite DNA repeats. Palacios-Gimenez OM; Koelman J; Palmada-Flores M; Bradford TM; Jones KK; Cooper SJB; Kawakami T; Suh A BMC Biol; 2020 Dec; 18(1):199. PubMed ID: 33349252 [TBL] [Abstract][Full Text] [Related]
11. Incursion pathways of the Asian tiger mosquito (Aedes albopictus) into Australia contrast sharply with those of the yellow fever mosquito (Aedes aegypti). Schmidt TL; Chung J; van Rooyen AR; Sly A; Weeks AR; Hoffmann AA Pest Manag Sci; 2020 Dec; 76(12):4202-4209. PubMed ID: 32592440 [TBL] [Abstract][Full Text] [Related]
12. Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus. Palatini U; Miesen P; Carballar-Lejarazu R; Ometto L; Rizzo E; Tu Z; van Rij RP; Bonizzoni M BMC Genomics; 2017 Jul; 18(1):512. PubMed ID: 28676109 [TBL] [Abstract][Full Text] [Related]
13. Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti. Tu Z Mol Biol Evol; 2000 Sep; 17(9):1313-25. PubMed ID: 10958848 [TBL] [Abstract][Full Text] [Related]
14. Genomic and evolutionary analyses of Tango transposons in Aedes aegypti, Anopheles gambiae and other mosquito species. Coy MR; Tu Z Insect Mol Biol; 2007 Aug; 16(4):411-21. PubMed ID: 17506852 [TBL] [Abstract][Full Text] [Related]
15. Considering transposable element diversification in de novo annotation approaches. Flutre T; Duprat E; Feuillet C; Quesneville H PLoS One; 2011 Jan; 6(1):e16526. PubMed ID: 21304975 [TBL] [Abstract][Full Text] [Related]
16. Homology-Free Detection of Transposable Elements Unveils Their Dynamics in Three Ecologically Distinct Castro MRJ; Goubert C; Monteiro FA; Vieira C; Carareto CMA Genes (Basel); 2020 Feb; 11(2):. PubMed ID: 32041215 [TBL] [Abstract][Full Text] [Related]
17. Three novel families of miniature inverted-repeat transposable elements are associated with genes of the yellow fever mosquito, Aedes aegypti. Tu Z Proc Natl Acad Sci U S A; 1997 Jul; 94(14):7475-80. PubMed ID: 9207116 [TBL] [Abstract][Full Text] [Related]
18. A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation. Poelchau MF; Reynolds JA; Denlinger DL; Elsik CG; Armbruster PA BMC Genomics; 2011 Dec; 12():619. PubMed ID: 22185595 [TBL] [Abstract][Full Text] [Related]
19. Proteomics informed by transcriptomics for characterising active transposable elements and genome annotation in Aedes aegypti. Maringer K; Yousuf A; Heesom KJ; Fan J; Lee D; Fernandez-Sesma A; Bessant C; Matthews DA; Davidson AD BMC Genomics; 2017 Jan; 18(1):101. PubMed ID: 28103802 [TBL] [Abstract][Full Text] [Related]
20. Rapid evolution and the genomic consequences of selection against interspecific mating. Burford Reiskind MO; Labadie P; Bargielowski I; Lounibos LP; Reiskind MH Mol Ecol; 2018 Sep; 27(18):3641-3654. PubMed ID: 30069966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]