These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 25768187)

  • 21. Low-noise octave-spanning mid-infrared supercontinuum generation in a multimode chalcogenide fiber.
    Eslami Z; Ryczkowski P; Salmela L; Genty G
    Opt Lett; 2020 Jun; 45(11):3103-3106. PubMed ID: 32479470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 1.5-14  μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber.
    Zhao Z; Wang X; Dai S; Pan Z; Liu S; Sun L; Zhang P; Liu Z; Nie Q; Shen X; Wang R
    Opt Lett; 2016 Nov; 41(22):5222-5225. PubMed ID: 27842098
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm.
    Marandi A; Rudy CW; Plotnichenko VG; Dianov EM; Vodopyanov KL; Byer RL
    Opt Express; 2012 Oct; 20(22):24218-25. PubMed ID: 23187184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power.
    Liu K; Liu J; Shi H; Tan F; Wang P
    Opt Express; 2014 Oct; 22(20):24384-91. PubMed ID: 25322014
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multioctave infrared supercontinuum generation in large-core As₂S₃ fibers.
    Théberge F; Thiré N; Daigle JF; Mathieu P; Schmidt BE; Messaddeq Y; Vallée R; Légaré F
    Opt Lett; 2014 Nov; 39(22):6474-7. PubMed ID: 25490497
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mid-infrared supercontinuum generation from 1.6 to >11  μm using concatenated step-index fluoride and chalcogenide fibers.
    Martinez RA; Plant G; Guo K; Janiszewski B; Freeman MJ; Maynard RL; Islam MN; Terry FL; Alvarez O; Chenard F; Bedford R; Gibson R; Ifarraguerri AI
    Opt Lett; 2018 Jan; 43(2):296-299. PubMed ID: 29328264
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides.
    Tremblay JÉ; Malinowski M; Richardson KA; Fathpour S; Wu MC
    Opt Express; 2018 Aug; 26(16):21358-21363. PubMed ID: 30119438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In-amplifier mid-infrared supercontinuum generation.
    Gauthier JC; Fortin V; Duval S; Vallée R; Bernier M
    Opt Lett; 2015 Nov; 40(22):5247-50. PubMed ID: 26565846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supercontinuum generation in chalcogenide-silica step-index fibers.
    Granzow N; Stark SP; Schmidt MA; Tverjanovich AS; Wondraczek L; Russell PS
    Opt Express; 2011 Oct; 19(21):21003-10. PubMed ID: 21997108
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system.
    Yang W; Zhang B; Yin K; Zhou X; Hou J
    Opt Express; 2013 Aug; 21(17):19732-42. PubMed ID: 24105521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coherent Mid-IR Supercontinuum Generation using Tapered Chalcogenide Step-Index Optical Fiber: Experiment and modelling.
    Saini TS; Tuan TH; Suzuki T; Ohishi Y
    Sci Rep; 2020 Feb; 10(1):2236. PubMed ID: 32042097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly efficient cascaded amplification using Pr(3+)-doped mid-infrared chalcogenide fiber amplifiers.
    Hu J; Menyuk CR; Wei C; Brandon Shaw L; Sanghera JS; Aggarwal ID
    Opt Lett; 2015 Aug; 40(16):3687-90. PubMed ID: 26274635
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design and analysis of a highly nonlinear composite photonic crystal fiber for supercontinuum generation: visible to mid-infrared.
    Jamatia P; Saini TS; Kumar A; Sinha RK
    Appl Opt; 2016 Aug; 55(24):6775-81. PubMed ID: 27557002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 1.9-3.6  μm supercontinuum generation in a very short highly nonlinear germania fiber with a high mid-infrared power ratio.
    Yin K; Zhang B; Yao J; Yang L; Liu G; Hou J
    Opt Lett; 2016 Nov; 41(21):5067-5070. PubMed ID: 27805687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two octaves mid-infrared supercontinuum generation in As₂Se₃ microwires.
    Al-Kadry A; Amraoui ME; Messaddeq Y; Rochette M
    Opt Express; 2014 Dec; 22(25):31131-7. PubMed ID: 25607062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 0.6-3.2 μm supercontinuum generation in a step-index germania-core fiber using a 4.4 kW peak-power pump laser.
    Yang L; Zhang B; Yin K; Yao J; Liu G; Hou J
    Opt Express; 2016 Jun; 24(12):12600-6. PubMed ID: 27410281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers.
    Petersen CR; Engelsholm RD; Markos C; Brilland L; Caillaud C; Trolès J; Bang O
    Opt Express; 2017 Jun; 25(13):15336-15348. PubMed ID: 28788961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 µm.
    Salem R; Jiang Z; Liu D; Pafchek R; Gardner D; Foy P; Saad M; Jenkins D; Cable A; Fendel P
    Opt Express; 2015 Nov; 23(24):30592-602. PubMed ID: 26698692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Broadband mid-infrared supercontinuum generation in 1-meter-long As
    Zhang P; Yang P; Wang X; Wang R; Dai S; Nie Q
    Opt Express; 2016 Dec; 24(25):28400-28408. PubMed ID: 27958550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Compact 3-8  μm supercontinuum generation in a low-loss As
    Robichaud LR; Fortin V; Gauthier JC; Châtigny S; Couillard JF; Delarosbil JL; Vallée R; Bernier M
    Opt Lett; 2016 Oct; 41(20):4605-4608. PubMed ID: 28005847
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.