These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 25768197)

  • 1. Continuous-variable entanglement measurement using an unbalanced Mach-Zehnder interferometer.
    Xia C; Wang D; Wu Y; Guo J; Liu F; Zhang Y; Xiao M
    Opt Lett; 2015 Mar; 40(6):1121-4. PubMed ID: 25768197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental demonstration of unconditional entanglement swapping for continuous variables.
    Jia X; Su X; Pan Q; Gao J; Xie C; Peng K
    Phys Rev Lett; 2004 Dec; 93(25):250503. PubMed ID: 15697885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of continuous variable Einstein-Podolsky-Rosen entanglement via the Kerr nonlinearity in an optical fiber.
    Silberhorn C; Lam PK; Weiss O; König F; Korolkova N; Leuchs G
    Phys Rev Lett; 2001 May; 86(19):4267-70. PubMed ID: 11328151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental demonstration of quantum entanglement between frequency-nondegenerate optical twin beams.
    Su X; Tan A; Jia X; Pan Q; Xie C; Peng K
    Opt Lett; 2006 Apr; 31(8):1133-5. PubMed ID: 16625927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-sensitive phase measurement based on an SU(1,1) interferometer employing external resources and substract intensity detection.
    Liu J; Wang Y; Zhang M; Wang J; Wei D; Gao H
    Opt Express; 2020 Dec; 28(26):39443-39452. PubMed ID: 33379493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier.
    Wang Y; Shen H; Jin X; Su X; Xie C; Peng K
    Opt Express; 2010 Mar; 18(6):6149-55. PubMed ID: 20389637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous variable entanglement enhancement and manipulation by a subthreshold Type II optical parametric amplifier.
    Shang Y; Jia X; Shen Y; Xie C; Peng K
    Opt Lett; 2010 Mar; 35(6):853-5. PubMed ID: 20237621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of bright two-color continuous variable entanglement.
    Villar AS; Cruz LS; Cassemiro KN; Martinelli M; Nussenzveig P
    Phys Rev Lett; 2005 Dec; 95(24):243603. PubMed ID: 16384378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonclassical intensity correlation from a type I phase-matched optical parametric oscillator.
    Leong KW; Wong NC; Shapiro JH
    Opt Lett; 1990 Oct; 15(19):1058-60. PubMed ID: 19770996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electro-optically switchable spatial-mode entangled photon pairs using a modified Mach-Zehnder interferometer.
    Lugani J; Ghosh S; Thyagarajan K
    Opt Lett; 2012 Sep; 37(17):3729-31. PubMed ID: 22941005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal.
    Zhou Y; Jia X; Li F; Xie C; Peng K
    Opt Express; 2015 Feb; 23(4):4952-9. PubMed ID: 25836530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of continuous variable quantum entanglement at a telecommunication wavelength over 20  km of optical fiber.
    Feng J; Wan Z; Li Y; Zhang K
    Opt Lett; 2017 Sep; 42(17):3399-3402. PubMed ID: 28957047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulsed entanglement measured by parametric amplifier assisted homodyne detection.
    Li J; Liu Y; Huo N; Cui L; Feng C; Ou ZY; Li X
    Opt Express; 2019 Oct; 27(21):30552-30562. PubMed ID: 31684300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sub-shot-noise phase quadrature measurement of intense light beams.
    Glöckl O; Andersen UL; Lorenz S; Silberhorn Ch; Korolkova N; Leuchs G
    Opt Lett; 2004 Aug; 29(16):1936-8. PubMed ID: 15357365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realistic model of entanglement-enhanced sensing in optical fibers.
    Krueper G; Yu C; Libby SB; Mellors R; Cohen L; Gopinath JT
    Opt Express; 2022 Mar; 30(6):8652-8666. PubMed ID: 35299312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-bin entangled photon pairs from spontaneous parametric down-conversion pumped by a cw multi-mode diode laser.
    Kwon O; Park KK; Ra YS; Kim YS; Kim YH
    Opt Express; 2013 Oct; 21(21):25492-500. PubMed ID: 24150388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable single-photon interference in a 1 km fiber-optic Mach-Zehnder interferometer with continuous phase adjustment.
    Xavier GB; von der Weid JP
    Opt Lett; 2011 May; 36(10):1764-6. PubMed ID: 21593883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scheme for efficient extraction of low-frequency signal beyond the quantum limit by frequency-shift detection.
    Yang RG; Zhang J; Zhai ZH; Zhai SQ; Liu K; Gao JR
    Opt Express; 2015 Aug; 23(16):21323-33. PubMed ID: 26367980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Squeezed-light-driven force detection with an optomechanical cavity in a Mach-Zehnder interferometer.
    Lee CW; Lee JH; Seok H
    Sci Rep; 2020 Oct; 10(1):17496. PubMed ID: 33060770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of the phase sensitivity with two-mode squeezed coherent state based on a Mach-Zehnder interferometer.
    Liu J; Shao T; Wang Y; Zhang M; Hu Y; Chen D; Wei D
    Opt Express; 2023 Aug; 31(17):27735-27748. PubMed ID: 37710842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.