BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 25768293)

  • 1. Involvement of the Cdc42 pathway in CFTR post-translational turnover and in its plasma membrane stability in airway epithelial cells.
    Ferru-Clément R; Fresquet F; Norez C; Métayé T; Becq F; Kitzis A; Thoreau V
    PLoS One; 2015; 10(3):e0118943. PubMed ID: 25768293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CFTR surface expression and chloride currents are decreased by inhibitors of N-WASP and actin polymerization.
    Ganeshan R; Nowotarski K; Di A; Nelson DJ; Kirk KL
    Biochim Biophys Acta; 2007 Feb; 1773(2):192-200. PubMed ID: 17084917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turnover of the cystic fibrosis transmembrane conductance regulator (CFTR): slow degradation of wild-type and delta F508 CFTR in surface membrane preparations of immortalized airway epithelial cells.
    Wei X; Eisman R; Xu J; Harsch AD; Mulberg AE; Bevins CL; Glick MC; Scanlin TF
    J Cell Physiol; 1996 Aug; 168(2):373-84. PubMed ID: 8707873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.
    Farinha CM; Matos P; Amaral MD
    FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The short apical membrane half-life of rescued {Delta}F508-cystic fibrosis transmembrane conductance regulator (CFTR) results from accelerated endocytosis of {Delta}F508-CFTR in polarized human airway epithelial cells.
    Swiatecka-Urban A; Brown A; Moreau-Marquis S; Renuka J; Coutermarsh B; Barnaby R; Karlson KH; Flotte TR; Fukuda M; Langford GM; Stanton BA
    J Biol Chem; 2005 Nov; 280(44):36762-72. PubMed ID: 16131493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytoskeleton regulators CAPZA2 and INF2 associate with CFTR to control its plasma membrane levels under EPAC1 activation.
    Santos JD; Pinto FR; Ferreira JF; Amaral MD; Zaccolo M; Farinha CM
    Biochem J; 2020 Jul; 477(13):2561-2580. PubMed ID: 32573649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+/H+ exchanger regulatory factor 1 overexpression-dependent increase of cytoskeleton organization is fundamental in the rescue of F508del cystic fibrosis transmembrane conductance regulator in human airway CFBE41o- cells.
    Favia M; Guerra L; Fanelli T; Cardone RA; Monterisi S; Di Sole F; Castellani S; Chen M; Seidler U; Reshkin SJ; Conese M; Casavola V
    Mol Biol Cell; 2010 Jan; 21(1):73-86. PubMed ID: 19889841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of endocytic trafficking and apical stability of CFTR in primary human airway epithelial cultures.
    Cholon DM; O'Neal WK; Randell SH; Riordan JR; Gentzsch M
    Am J Physiol Lung Cell Mol Physiol; 2010 Mar; 298(3):L304-14. PubMed ID: 20008117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HGF stimulation of Rac1 signaling enhances pharmacological correction of the most prevalent cystic fibrosis mutant F508del-CFTR.
    Moniz S; Sousa M; Moraes BJ; Mendes AI; Palma M; Barreto C; Fragata JI; Amaral MD; Matos P
    ACS Chem Biol; 2013 Feb; 8(2):432-42. PubMed ID: 23148778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholesterol-sensitive Cdc42 activation regulates actin polymerization for endocytosis via the GEEC pathway.
    Chadda R; Howes MT; Plowman SJ; Hancock JF; Parton RG; Mayor S
    Traffic; 2007 Jun; 8(6):702-17. PubMed ID: 17461795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. c-Cbl facilitates endocytosis and lysosomal degradation of cystic fibrosis transmembrane conductance regulator in human airway epithelial cells.
    Ye S; Cihil K; Stolz DB; Pilewski JM; Stanton BA; Swiatecka-Urban A
    J Biol Chem; 2010 Aug; 285(35):27008-27018. PubMed ID: 20525683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rab11b regulates the apical recycling of the cystic fibrosis transmembrane conductance regulator in polarized intestinal epithelial cells.
    Silvis MR; Bertrand CA; Ameen N; Golin-Bisello F; Butterworth MB; Frizzell RA; Bradbury NA
    Mol Biol Cell; 2009 Apr; 20(8):2337-50. PubMed ID: 19244346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of cystic fibrosis transmembrane regulator trafficking and protein expression by a Rho family small GTPase TC10.
    Cheng J; Wang H; Guggino WB
    J Biol Chem; 2005 Feb; 280(5):3731-9. PubMed ID: 15546864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disabled-2 protein facilitates assembly polypeptide-2-independent recruitment of cystic fibrosis transmembrane conductance regulator to endocytic vesicles in polarized human airway epithelial cells.
    Cihil KM; Ellinger P; Fellows A; Stolz DB; Madden DR; Swiatecka-Urban A
    J Biol Chem; 2012 Apr; 287(18):15087-99. PubMed ID: 22399289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical properties and inhibitors of (N-)WASP.
    Leung DW; Morgan DM; Rosen MK
    Methods Enzymol; 2006; 406():281-96. PubMed ID: 16472665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking.
    Farinha CM; Canato S
    Cell Mol Life Sci; 2017 Jan; 74(1):39-55. PubMed ID: 27699454
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulated trafficking of the CFTR chloride channel.
    Kleizen B; Braakman I; de Jonge HR
    Eur J Cell Biol; 2000 Aug; 79(8):544-56. PubMed ID: 11001491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The deubiquitinating enzyme USP10 regulates the endocytic recycling of CFTR in airway epithelial cells.
    Bomberger JM; Barnaby RL; Stanton BA
    Channels (Austin); 2010; 4(3):150-4. PubMed ID: 20215869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional cystic fibrosis transmembrane conductance regulator tagged with an epitope of the vesicular stomatis virus glycoprotein can be addressed to the apical domain of polarized cells.
    Costa de Beauregard MA; Edelman A; Chesnoy-Marchais D; Tondelier D; Lapillonne A; El Marjou F; Robine S; Louvard D
    Eur J Cell Biol; 2000 Nov; 79(11):795-802. PubMed ID: 11139142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cdc42, Par6, and aPKC regulate Arp2/3-mediated endocytosis to control local adherens junction stability.
    Georgiou M; Marinari E; Burden J; Baum B
    Curr Biol; 2008 Nov; 18(21):1631-8. PubMed ID: 18976918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.