BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 25768500)

  • 1. Significance of thermal fluctuations and hydrodynamic interactions in receptor-ligand-mediated adhesive dynamics of a spherical particle in wall-bound shear flow.
    Ramesh KV; Thaokar R; Prakash JR; Prabhakar R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022302. PubMed ID: 25768500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of shear flow on the hydrodynamic drag force of a spherical particle near a wall evaluated using optical tweezers and microfluidics.
    Geonzon LC; Kobayashi M; Adachi Y
    Soft Matter; 2021 Sep; 17(34):7914-7920. PubMed ID: 34373877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion of microspheres in shear flow near a wall: use to measure binding rates between attached molecules.
    Pierres A; Benoliel AM; Zhu C; Bongrand P
    Biophys J; 2001 Jul; 81(1):25-42. PubMed ID: 11423392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoscale simulations of hydrodynamic squirmer interactions.
    Götze IO; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion, sedimentation, and rheology of concentrated suspensions of core-shell particles.
    Abade GC; Cichocki B; Ekiel-Jeżewska ML; Nägele G; Wajnryb E
    J Chem Phys; 2012 Mar; 136(10):104902. PubMed ID: 22423856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of a self-diffusiophoretic particle in shear flow.
    Frankel AE; Khair AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013030. PubMed ID: 25122392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adhesion of a polymer-grafted nanoparticle to cells explored using generalized Langevin dynamics.
    Wu YW; Yu HY
    Soft Matter; 2018 Dec; 14(48):9910-9922. PubMed ID: 30475366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiparticle adhesive dynamics. Interactions between stably rolling cells.
    King MR; Hammer DA
    Biophys J; 2001 Aug; 81(2):799-813. PubMed ID: 11463626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metal speciation dynamics in dispersions of soft colloidal ligand particles under steady-state laminar flow condition.
    Duval JF; Qian S
    J Phys Chem A; 2009 Nov; 113(46):12791-804. PubMed ID: 19810749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic states of cells adhering in shear flow: from slipping to rolling.
    Korn CB; Schwarz US
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041904. PubMed ID: 18517653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of surface effects on the rotational diffusion of a colloidal particle.
    Lobo S; Escauriaza C; Celedon A
    Langmuir; 2011 Mar; 27(6):2142-5. PubMed ID: 21322571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistics of cell adhesion under hydrodynamic flow: simulation and experiment.
    Hammer DA; Tempelman LA; Apte SM
    Blood Cells; 1993; 19(2):261-75; discussion 275-7. PubMed ID: 8312563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interplay between hydrodynamics and the free energy surface in the assembly of nanoscale hydrophobes.
    Morrone JA; Li J; Berne BJ
    J Phys Chem B; 2012 Jan; 116(1):378-89. PubMed ID: 22142269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.
    Furukawa A; Marenduzzo D; Cates ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022303. PubMed ID: 25215734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are hydrodynamic interactions important in the kinetics of hydrophobic collapse?
    Li J; Morrone JA; Berne BJ
    J Phys Chem B; 2012 Sep; 116(37):11537-44. PubMed ID: 22931395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotational and translational diffusion in an interacting active dumbbell system.
    Cugliandolo LF; Gonnella G; Suma A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062124. PubMed ID: 26172678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamic interactions and the diffusivity of spheroidal particles.
    Marath NK; Wettlaufer JS
    J Chem Phys; 2019 Jul; 151(2):024107. PubMed ID: 31301717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow-induced translocation of polymers through a fluidic channel: a dissipative particle dynamics simulation study.
    Guo J; Li X; Liu Y; Liang H
    J Chem Phys; 2011 Apr; 134(13):134906. PubMed ID: 21476773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonequilibrium distributions and hydrodynamic coupling distort the measurement of nanoscale forces near interfaces.
    Swan JW; Furst EM
    Biophys J; 2013 Feb; 104(4):863-72. PubMed ID: 23442965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.