These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 25768536)

  • 1. Effects of extracellular potassium diffusion on electrically coupled neuron networks.
    Wu XX; Shuai J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022712. PubMed ID: 25768536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multistability in a neuron model with extracellular potassium dynamics.
    Wu XX; Shuai JW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061911. PubMed ID: 23005131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of extracellular potassium dynamics in the different stages of ictal bursting and spreading depression: a computational study.
    Florence G; Dahlem MA; Almeida AC; Bassani JW; Kurths J
    J Theor Biol; 2009 May; 258(2):219-28. PubMed ID: 19490858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations.
    Kager H; Wadman WJ; Somjen GG
    J Neurophysiol; 2000 Jul; 84(1):495-512. PubMed ID: 10899222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of potassium lateral diffusion in non-synaptic epilepsy: a computational study.
    Park EH; Durand DM
    J Theor Biol; 2006 Feb; 238(3):666-82. PubMed ID: 16085109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusive coupling and network periodicity: a computational study.
    Park EH; Feng Z; Durand DM
    Biophys J; 2008 Aug; 95(3):1126-37. PubMed ID: 18441034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusive coupling can induce synchronized periodic activity in neural networks.
    Durand DM; Park EY
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3677-8. PubMed ID: 19163508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic changes and alterations in the size of the extracellular space during epileptic activity.
    Lux HD; Heinemann U; Dietzel I
    Adv Neurol; 1986; 44():619-39. PubMed ID: 3518349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuroprotective Role of Gap Junctions in a Neuron Astrocyte Network Model.
    Huguet G; Joglekar A; Messi LM; Buckalew R; Wong S; Terman D
    Biophys J; 2016 Jul; 111(2):452-462. PubMed ID: 27463146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes of Ionic Concentrations During Seizure Transitions - A Modeling Study.
    Gentiletti D; Suffczynski P; Gnatkovsky V; de Curtis M
    Int J Neural Syst; 2017 Jun; 27(4):1750004. PubMed ID: 27802792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic mechanisms underlying spontaneous CA1 neuronal firing in Ca2+-free solution.
    Shuai J; Bikson M; Hahn PJ; Lian J; Durand DM
    Biophys J; 2003 Mar; 84(3):2099-111. PubMed ID: 12609911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPases in the rat CA1 hippocampal region.
    Vaillend C; Mason SE; Cuttle MF; Alger BE
    J Neurophysiol; 2002 Dec; 88(6):2963-78. PubMed ID: 12466422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus.
    Saudargiene A; Cobb S; Graham BP
    Hippocampus; 2015 Feb; 25(2):208-18. PubMed ID: 25220633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological blockade of gap junctions induces repetitive surging of extracellular potassium within the locust CNS.
    Spong KE; Robertson RM
    J Insect Physiol; 2013 Oct; 59(10):1031-40. PubMed ID: 23916994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Astrocytes restrict discharge duration and neuronal sodium loads during recurrent network activity.
    Karus C; Mondragão MA; Ziemens D; Rose CR
    Glia; 2015 Jun; 63(6):936-57. PubMed ID: 25639699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of synchronous synaptic input in CA1 pyramidal neuron depends on spatial and temporal distributions of the input.
    Tigerholm J; Migliore M; Fransén E
    Hippocampus; 2013 Jan; 23(1):87-99. PubMed ID: 22996230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics.
    Cressman JR; Ullah G; Ziburkus J; Schiff SJ; Barreto E
    J Comput Neurosci; 2009 Apr; 26(2):159-70. PubMed ID: 19169801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo dual intra- and extracellular recordings suggest bidirectional coupling between CA1 pyramidal neurons.
    Chorev E; Brecht M
    J Neurophysiol; 2012 Sep; 108(6):1584-93. PubMed ID: 22723679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A unified model of CA1/3 pyramidal cells: an investigation into excitability.
    Nowacki J; Osinga HM; Brown JT; Randall AD; Tsaneva-Atanasova K
    Prog Biophys Mol Biol; 2011 Mar; 105(1-2):34-48. PubMed ID: 20887748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the glial envelope on extracellular K(+) diffusion in olfactory glomeruli.
    Goriely AR; Secomb TW; Tolbert LP
    J Neurophysiol; 2002 Apr; 87(4):1712-22. PubMed ID: 11929893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.