These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25768537)

  • 1. Line tension of multicomponent bilayer membranes.
    Dehghan A; Pastor KA; Shi AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022713. PubMed ID: 25768537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic property of membranes self-assembled from diblock and triblock copolymers.
    Xu R; Dehghan A; Shi AC; Zhou J
    Chem Phys Lipids; 2019 Jul; 221():83-92. PubMed ID: 30926383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation and stabilization of pores in bilayer membranes by peptide-like amphiphilic polymers.
    Checkervarty A; Werner M; Sommer JU
    Soft Matter; 2018 Mar; 14(13):2526-2534. PubMed ID: 29537426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical properties of L-alpha dipalmitoyl phosphatidylcholine large unilamellar vesicles: Effect of hydrophobic block (PLA/PCL) of amphipathic diblock copolymers.
    Flandez K; Bonardd S; Soto-Arriaza M
    Chem Phys Lipids; 2020 Aug; 230():104927. PubMed ID: 32454007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic properties and line tension of self-assembled bilayer membranes.
    Li J; Pastor KA; Shi AC; Schmid F; Zhou J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012718. PubMed ID: 23944501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing membrane modulus of giant unilamellar lipid vesicles by lateral co-assembly of amphiphilic triblock copolymers.
    Kang JY; Choi I; Seo M; Lee JY; Hong S; Gong G; Shin SS; Lee Y; Kim JW
    J Colloid Interface Sci; 2020 Mar; 561():318-326. PubMed ID: 31740134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric distribution of cone-shaped lipids in a highly curved bilayer revealed by a small angle neutron scattering technique.
    Sakuma Y; Urakami N; Taniguchi T; Imai M
    J Phys Condens Matter; 2011 Jul; 23(28):284104. PubMed ID: 21709321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of amphiphilic and triphilic block copolymers to lipid model membranes: the role of perfluorinated moieties.
    Schwieger C; Achilles A; Scholz S; Rüger J; Bacia K; Saalwaechter K; Kressler J; Blume A
    Soft Matter; 2014 Sep; 10(33):6147-60. PubMed ID: 24942348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translocation and induced permeability of random amphiphilic copolymers interacting with lipid bilayer membranes.
    Werner M; Sommer JU
    Biomacromolecules; 2015 Jan; 16(1):125-35. PubMed ID: 25539014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific binding structures of dendrimers on lipid bilayer membranes.
    Wang YL; Lu ZY; Laaksonen A
    Phys Chem Chem Phys; 2012 Jun; 14(23):8348-59. PubMed ID: 22585181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mimicking effects of cholesterol in lipid bilayer membranes by self-assembled amphiphilic block copolymers.
    Wang X; Xu S; Cohen FS; Zhang J; Cai Y
    Soft Matter; 2023 Jul; 19(29):5487-5501. PubMed ID: 37434554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pore nucleation in mechanically stretched bilayer membranes.
    Wang ZJ; Frenkel D
    J Chem Phys; 2005 Oct; 123(15):154701. PubMed ID: 16252963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between grafted cationic dendrimers and anionic bilayer membranes.
    Lewis T; Ganesan V
    J Phys Chem B; 2013 Aug; 117(33):9806-20. PubMed ID: 23863079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromechanical limits of polymersomes.
    Aranda-Espinoza H; Bermudez H; Bates FS; Discher DE
    Phys Rev Lett; 2001 Nov; 87(20):208301. PubMed ID: 11690515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Main phase transition in lipid bilayers: Phase coexistence and line tension in a soft, solvent-free, coarse-grained model.
    Hömberg M; Müller M
    J Chem Phys; 2010 Apr; 132(15):155104. PubMed ID: 20423201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of Lipopolysaccharide and Cholesterol-Modified Gelatin on Supported Lipid Bilayers: Effect of Bilayer Area Confinement and Bilayer Edge Tension.
    Kataoka-Hamai C; Kaizuka Y; Taguchi T
    Langmuir; 2016 Feb; 32(5):1250-8. PubMed ID: 26735125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forming transmembrane channels using end-functionalized nanotubes.
    Dutt M; Kuksenok O; Little SR; Balazs AC
    Nanoscale; 2011 Jan; 3(1):240-50. PubMed ID: 20976358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of ternary bilayer mixtures with asymmetric or symmetric unsaturated phosphatidylcholine lipids by coarse grained molecular dynamics simulations.
    Rosetti C; Pastorino C
    J Phys Chem B; 2012 Mar; 116(11):3525-37. PubMed ID: 22369354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elastic properties of liquid-crystalline bilayers self-assembled from semiflexible-flexible diblock copolymers.
    Cai Y; Zhang P; Shi AC
    Soft Matter; 2019 Dec; 15(45):9215-9223. PubMed ID: 31642464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paradoxical lipid dependence of pores formed by the Escherichia coli alpha-hemolysin in planar phospholipid bilayer membranes.
    Bakás L; Chanturiya A; Herlax V; Zimmerberg J
    Biophys J; 2006 Nov; 91(10):3748-55. PubMed ID: 16935953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.