These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 25768543)

  • 1. Modeling the electrical conduction in DNA nanowires: charge transfer and lattice fluctuation theories.
    Behnia S; Fathizadeh S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022719. PubMed ID: 25768543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Modeling the electrical conduction in DNA nanowires: Charge transfer and lattice fluctuation theories".
    Panahi M; Chitsazanmoghaddam M
    Phys Rev E; 2016 Apr; 93(4.2):046401. PubMed ID: 27176444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical conduction through DNA molecule.
    Abdalla S
    Prog Biophys Mol Biol; 2011 Sep; 106(3):485-97. PubMed ID: 21396395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical transport properties of single undoped and n-type doped InN nanowires.
    Richter T; Lüth H; Schäpers T; Meijers R; Jeganathan K; Estévez Hernández S; Calarco R; Marso M
    Nanotechnology; 2009 Oct; 20(40):405206. PubMed ID: 19738304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concepts on charge transfer through naturally vibrating DNA molecule.
    Abdalla S; Marzouki F
    Gene; 2012 Nov; 509(1):24-37. PubMed ID: 22959134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge transport in DNA: dependence of diffusion coefficient on temperature and electron-phonon coupling constant.
    Kalosakas G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051905. PubMed ID: 22181442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the temperature dependence of ballistic Coulomb drag in nanowires.
    Muradov MI; Gurevich VL
    J Phys Condens Matter; 2012 Apr; 24(13):135304. PubMed ID: 22406816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microvillar ion channels: cytoskeletal modulation of ion fluxes.
    Lange K
    J Theor Biol; 2000 Oct; 206(4):561-84. PubMed ID: 11013115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of ionized impurity scattering on the thermopower of Si nanowires.
    Oh JH; Jang MG; Shin M
    J Phys Condens Matter; 2013 Dec; 25(50):505301. PubMed ID: 24219975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterogeneity and chaos in the Peyrard-Bishop-Dauxois DNA model.
    Hillebrand M; Kalosakas G; Schwellnus A; Skokos C
    Phys Rev E; 2019 Feb; 99(2-1):022213. PubMed ID: 30934325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growing one-dimensional metallic nanowires by dielectrophoresis.
    Ranjan N; Vinzelberg H; Mertig M
    Small; 2006 Dec; 2(12):1490-6. PubMed ID: 17193011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Environmental Factors and Metallic Electrodes on AC Electrical Conduction Through DNA Molecule.
    Abdalla S; Obaid A; Al-Marzouki FM
    Nanoscale Res Lett; 2017 Dec; 12(1):316. PubMed ID: 28454482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lead-iodide nanowire perovskite with methylviologen showing interfacial charge-transfer absorption: a DFT analysis.
    Fujisawa J; Giorgi G
    Phys Chem Chem Phys; 2014 Sep; 16(33):17955-9. PubMed ID: 25050419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical properties of single and multiple poly(3,4-ethylenedioxythiophene) nanowires for sensing nitric oxide gas.
    Lu HH; Lin CY; Hsiao TC; Fang YY; Ho KC; Yang D; Lee CK; Hsu SM; Lin CW
    Anal Chim Acta; 2009 Apr; 640(1-2):68-74. PubMed ID: 19362622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wall effects on the electrical manipulation of metal nanowires.
    Loucaides NG; Ramos A
    Electrophoresis; 2015 Jul; 36(13):1414-22. PubMed ID: 25640250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stoichiometry dependent electron transport and gas sensing properties of indium oxide nanowires.
    Gali P; Sapkota G; Syllaios AJ; Littler C; Philipose U
    Nanotechnology; 2013 Jun; 24(22):225704. PubMed ID: 23644899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoinduced formation of electrically conductive thin palladium nanowires on DNA scaffolds.
    Kundu S; Wang K; Huitink D; Liang H
    Langmuir; 2009 Sep; 25(17):10146-52. PubMed ID: 19425561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of nanowire DNA sensor sensitivity using self-consistent simulation.
    Baumgartner S; Vasicek M; Bulyha A; Heitzinger C
    Nanotechnology; 2011 Oct; 22(42):425503. PubMed ID: 21945993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of conductive and photoluminescent DNA-templated polyindole nanowires.
    Hassanien R; Al-Hinai M; Farha Al-Said SA; Little R; Siller L; Wright NG; Houlton A; Horrocks BR
    ACS Nano; 2010 Apr; 4(4):2149-59. PubMed ID: 20218665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing charge transport in oxidatively damaged DNA sequences under the influence of structural fluctuations.
    Lee MH; Brancolini G; Gutiérrez R; Di Felice R; Cuniberti G
    J Phys Chem B; 2012 Sep; 116(36):10977-85. PubMed ID: 22679932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.