These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 25768556)

  • 1. Effect of zealotry in high-dimensional opinion dynamics models.
    Waagen A; Verma G; Chan K; Swami A; D'Souza R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022811. PubMed ID: 25768556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zealotry effects on opinion dynamics in the adaptive voter model.
    Klamser PP; Wiedermann M; Donges JF; Donner RV
    Phys Rev E; 2017 Nov; 96(5-1):052315. PubMed ID: 29347768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear q-voter model with inflexible zealots.
    Mobilia M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012803. PubMed ID: 26274221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zealots in multistate noisy voter models.
    Khalil N; Galla T
    Phys Rev E; 2021 Jan; 103(1-1):012311. PubMed ID: 33601527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zealots in the mean-field noisy voter model.
    Khalil N; San Miguel M; Toral R
    Phys Rev E; 2018 Jan; 97(1-1):012310. PubMed ID: 29448335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zealots tame oscillations in the spatial rock-paper-scissors game.
    Szolnoki A; Perc M
    Phys Rev E; 2016 Jun; 93(6):062307. PubMed ID: 27415280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the high-dimensional naming game with committed minorities.
    Pickering W; Szymanski BK; Lim C
    Phys Rev E; 2016 May; 93(5):052311. PubMed ID: 27300914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Curvature-driven growth and interfacial noise in the voter model with self-induced zealots.
    Latoski LCF; Dantas WG; Arenzon JJ
    Phys Rev E; 2022 Jul; 106(1-1):014121. PubMed ID: 35974624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Opinion dynamics of random-walking agents on a lattice.
    Ree S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056110. PubMed ID: 21728608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coevolutionary dynamics of opinions and networks: from diversity to uniformity.
    Fu F; Wang L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016104. PubMed ID: 18764017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opinion formation in time-varying social networks: The case of the naming game.
    Maity SK; Manoj TV; Mukherjee A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036110. PubMed ID: 23030983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategy of competition between two groups based on an inflexible contrarian opinion model.
    Li Q; Braunstein LA; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066101. PubMed ID: 22304149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phases of a conserved mass model of aggregation with fragmentation at fixed sites.
    Jain K; Barma M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016107. PubMed ID: 11461331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous out-of-equilibrium nonlinear q-voter model with zealotry.
    Mellor A; Mobilia M; Zia RK
    Phys Rev E; 2017 Jan; 95(1-1):012104. PubMed ID: 28208330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mean-field approximation for the Sznajd model in complex networks.
    Araújo MS; Vannucchi FS; Timpanaro AM; Prado CP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022813. PubMed ID: 25768558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistics of opinion domains of the majority-vote model on a square lattice.
    Peres LR; Fontanari JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046103. PubMed ID: 21230341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How zealots affect the energy cost for controlling complex social networks.
    Chen H; Yong EH
    Chaos; 2022 Jun; 32(6):063116. PubMed ID: 35778141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalized Sznajd model for opinion propagation.
    Timpanaro AM; Prado CP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021119. PubMed ID: 19792089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opinion dynamics on biased dynamical networks: Beyond rare opinion updating.
    Wang X; Wu B
    Chaos; 2024 Mar; 34(3):. PubMed ID: 38552181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical dynamics of stochastic models with energy conservation (model C).
    Folk R; Moser G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036101. PubMed ID: 15089355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.