These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25768601)

  • 1. Generalization of Darcy's law for Bingham fluids in porous media: from flow-field statistics to the flow-rate regimes.
    Chevalier T; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023011. PubMed ID: 25768601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of the inertial deviation from Darcy's law: An investigation from a microscopic flow analysis on two-dimensional model structures.
    Agnaou M; Lasseux D; Ahmadi A
    Phys Rev E; 2017 Oct; 96(4-1):043105. PubMed ID: 29347623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breakage of non-Newtonian character in flow through a porous medium: evidence from numerical simulation.
    Bleyer J; Coussot P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063018. PubMed ID: 25019890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moving line model and avalanche statistics of Bingham fluid flow in porous media.
    Chevalier T; Talon L
    Eur Phys J E Soft Matter; 2015 Jul; 38(7):76. PubMed ID: 26187726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. History effects on nonwetting fluid residuals during desaturation flow through disordered porous media.
    Chevalier T; Salin D; Talon L; Yiotis AG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):043015. PubMed ID: 25974588
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of off-diagonal transport coefficients in two-phase flow in porous media.
    Ramakrishnan TS; Goode PA
    J Colloid Interface Sci; 2015 Jul; 449():392-8. PubMed ID: 25748636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General hydrodynamic features of elastoviscoplastic fluid flows through randomised porous media.
    Parvar S; Chaparian E; Tammisola O
    Theor Comput Fluid Dyn; 2024; 38(4):531-544. PubMed ID: 39092079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-newtonian fluid flow through three-dimensional disordered porous media.
    Morais AF; Seybold H; Herrmann HJ; Andrade JS
    Phys Rev Lett; 2009 Nov; 103(19):194502. PubMed ID: 20365926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active Darcy's Law.
    Keogh RR; Kozhukhov T; Thijssen K; Shendruk TN
    Phys Rev Lett; 2024 May; 132(18):188301. PubMed ID: 38759204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A unified nomenclature for quantification and description of water conducting properties of sapwood xylem based on Darcy's law.
    Reid DE; Silins U; Mendoza C; Lieffers VJ
    Tree Physiol; 2005 Aug; 25(8):993-1000. PubMed ID: 15929930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroscopic momentum and mechanical energy equations for incompressible single-phase flow in porous media.
    Paéz-García CT; Valdés-Parada FJ; Lasseux D
    Phys Rev E; 2017 Feb; 95(2-1):023101. PubMed ID: 28297957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-phase flow in a chemically active porous medium.
    Darmon A; Benzaquen M; Salez T; Dauchot O
    J Chem Phys; 2014 Dec; 141(24):244704. PubMed ID: 25554172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the determination of a generalized Darcy equation for yield-stress fluid in porous media using a Lattice-Boltzmann TRT scheme.
    Talon L; Bauer D
    Eur Phys J E Soft Matter; 2013 Dec; 36(12):139. PubMed ID: 24326905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pore-scale visualization and characterization of viscous dissipation in porous media.
    Roman S; Soulaine C; Kovscek AR
    J Colloid Interface Sci; 2020 Jan; 558():269-279. PubMed ID: 31593860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms controlling fluid breakup and reconnection during two-phase flow in porous media.
    Spurin C; Bultreys T; Bijeljic B; Blunt MJ; Krevor S
    Phys Rev E; 2019 Oct; 100(4-1):043115. PubMed ID: 31770918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Postbreakthrough behavior in flow through porous media.
    López E; Buldyrev SV; Dokholyan NV; Goldmakher L; Havlin S; King PR; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056314. PubMed ID: 12786279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examination of Darcys law for flow in porous media with variable porosity.
    Gray WG; Miller CT
    Environ Sci Technol; 2004 Nov; 38(22):5895-901. PubMed ID: 15573587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition from creeping via viscous-inertial to turbulent flow in fixed beds.
    Hlushkou D; Tallarek U
    J Chromatogr A; 2006 Sep; 1126(1-2):70-85. PubMed ID: 16806240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Yield-stress fluids in porous media: a comparison of viscoplastic and elastoviscoplastic flows.
    Chaparian E; Izbassarov D; De Vita F; Brandt L; Tammisola O
    Meccanica; 2020; 55(2):331-342. PubMed ID: 32116390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow of power-law fluids in self-affine fracture channels.
    Yan Y; Koplik J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036315. PubMed ID: 18517519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.