These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 25768601)

  • 21. Map of fluid flow in fractal porous medium into fractal continuum flow.
    Balankin AS; Elizarraraz BE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):056314. PubMed ID: 23004869
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tumor growth towards lower extracellular matrix conductivity regions under Darcy's Law and steady morphology.
    Zheng X; Zhao K; Jackson T; Lowengrub J
    J Math Biol; 2022 Jul; 85(1):5. PubMed ID: 35796898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic fluid flow through porous media.
    Maillet JB; Coveney PV
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt B):2898-913. PubMed ID: 11088774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generalized Newtonian fluid flow in porous media.
    Bowers CA; Miller CT
    Phys Rev Fluids; 2021 Dec; 6(12):. PubMed ID: 36601019
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cluster evolution in steady-state two-phase flow in porous media.
    Ramstad T; Hansen A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026306. PubMed ID: 16605453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaporation Limited Radial Capillary Penetration in Porous Media.
    Liu M; Wu J; Gan Y; Hanaor DA; Chen CQ
    Langmuir; 2016 Sep; 32(38):9899-904. PubMed ID: 27583455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Beyond Darcy's law: The role of phase topology and ganglion dynamics for two-fluid flow.
    Armstrong RT; McClure JE; Berrill MA; Rücker M; Schlüter S; Berg S
    Phys Rev E; 2016 Oct; 94(4-1):043113. PubMed ID: 27841482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Darcy's law of yield stress fluids on a treelike network.
    Schimmenti VM; Lanza F; Hansen A; Franz S; Rosso A; Talon L; De Luca A
    Phys Rev E; 2023 Aug; 108(2):L023102. PubMed ID: 37723767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tailoring porous media for controllable capillary flow.
    Liu M; Suo S; Wu J; Gan Y; Ah Hanaor D; Chen CQ
    J Colloid Interface Sci; 2019 Mar; 539():379-387. PubMed ID: 30594833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. THE ROLE OF POROUS MEDIA IN MODELING FLUID FLOW WITHIN HOLLOW FIBER MEMBRANES OF THE TOTAL ARTIFICIAL LUNG.
    Khanafer K; Cook K; Marafie A
    J Porous Media; 2012; 15(2):113-122. PubMed ID: 23471191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Scaling and statistics in three-dimensional compressible turbulence.
    Wang J; Shi Y; Wang LP; Xiao Z; He XT; Chen S
    Phys Rev Lett; 2012 May; 108(21):214505. PubMed ID: 23003269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of the critical pressure drop for filtration of super-compactible cakes.
    Tiller FM; Li WP; Lee JB
    Water Sci Technol; 2001; 44(10):171-6. PubMed ID: 11794649
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional hydrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media.
    Love PJ; Maillet JB; Coveney PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 1):061302. PubMed ID: 11736175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Steady-state, simultaneous two-phase flow in porous media: an experimental study.
    Tallakstad KT; Løvoll G; Knudsen HA; Ramstad T; Flekkøy EG; Måløy KJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036308. PubMed ID: 19905213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unified lattice Boltzmann method for flow in multiscale porous media.
    Kang Q; Zhang D; Chen S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 2):056307. PubMed ID: 12513596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistical scaling of pore-scale Lagrangian velocities in natural porous media.
    Siena M; Guadagnini A; Riva M; Bijeljic B; Pereira Nunes JP; Blunt MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023013. PubMed ID: 25215826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Darcy's Law for Yield Stress Fluids.
    Liu C; De Luca A; Rosso A; Talon L
    Phys Rev Lett; 2019 Jun; 122(24):245502. PubMed ID: 31322393
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.
    Pau GS; Almgren AS; Bell JB; Lijewski MJ
    Philos Trans A Math Phys Eng Sci; 2009 Nov; 367(1907):4633-54. PubMed ID: 19840985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lattice Boltzmann model for incompressible flows through porous media.
    Guo Z; Zhao TS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2B):036304. PubMed ID: 12366250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scaling laws in critical random Boolean networks with general in- and out-degree distributions.
    Möller M; Drossel B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052106. PubMed ID: 23767486
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.