These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 25768602)
1. Optimal design of Purcell's three-link swimmer. Giraldi L; Martinon P; Zoppello M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023012. PubMed ID: 25768602 [TBL] [Abstract][Full Text] [Related]
2. Dynamics and stability of Purcell's three-link microswimmer near a wall. Or Y Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):065302. PubMed ID: 21230698 [TBL] [Abstract][Full Text] [Related]
4. Optimization and small-amplitude analysis of Purcell's three-link microswimmer model. Wiezel O; Or Y Proc Math Phys Eng Sci; 2016 Aug; 472(2192):20160425. PubMed ID: 27616929 [TBL] [Abstract][Full Text] [Related]
5. Rehinging biflagellar locomotion in a viscous fluid. Spagnolie SE Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046323. PubMed ID: 19905452 [TBL] [Abstract][Full Text] [Related]
6. Low-Reynolds-number swimmer utilizing surface traveling waves: analytical and experimental study. Setter E; Bucher I; Haber S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066304. PubMed ID: 23005203 [TBL] [Abstract][Full Text] [Related]
7. Floppy swimming: viscous locomotion of actuated elastica. Lauga E Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041916. PubMed ID: 17500930 [TBL] [Abstract][Full Text] [Related]
8. Propulsion of a Two-Sphere Swimmer. Klotsa D; Baldwin KA; Hill RJ; Bowley RM; Swift MR Phys Rev Lett; 2015 Dec; 115(24):248102. PubMed ID: 26705658 [TBL] [Abstract][Full Text] [Related]
9. Comment on "optimal stroke patterns for Purcell's three-link swimmer". Raz O; Avron JE Phys Rev Lett; 2008 Jan; 100(2):029801; discussion 029802. PubMed ID: 18232944 [No Abstract] [Full Text] [Related]
10. Dynamics of Purcell's three-link microswimmer with a passive elastic tail. Passov E; Or Y Eur Phys J E Soft Matter; 2012 Aug; 35(8):78. PubMed ID: 22907616 [TBL] [Abstract][Full Text] [Related]
12. Comparison of time reversal symmetric and asymmetric nano-swimmers oriented with an electric field in soft matter. Rajonson G; Poulet D; Bruneau M; Teboul V J Chem Phys; 2020 Jan; 152(2):024503. PubMed ID: 31941324 [TBL] [Abstract][Full Text] [Related]
13. Asymmetry and stability of shape kinematics in microswimmers' motion. Or Y Phys Rev Lett; 2012 Jun; 108(25):258101. PubMed ID: 23004662 [TBL] [Abstract][Full Text] [Related]
14. Geometric visualization of self-propulsion in a complex medium. Hatton RL; Ding Y; Choset H; Goldman DI Phys Rev Lett; 2013 Feb; 110(7):078101. PubMed ID: 25166411 [TBL] [Abstract][Full Text] [Related]
15. Reciprocal locomotion of dense swimmers in Stokes flow. Gonzalez-Rodriguez D; Lauga E J Phys Condens Matter; 2009 May; 21(20):204103. PubMed ID: 21825512 [TBL] [Abstract][Full Text] [Related]
17. Noisy swimming at low Reynolds numbers. Dunkel J; Zaid IM Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021903. PubMed ID: 19792147 [TBL] [Abstract][Full Text] [Related]
18. Numerical study of a microscopic artificial swimmer. Gauger E; Stark H Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021907. PubMed ID: 17025472 [TBL] [Abstract][Full Text] [Related]
19. Parking 3-sphere swimmer: II. The long-arm asymptotic regime. Alouges F; Di Fratta G Eur Phys J E Soft Matter; 2020 Feb; 43(2):6. PubMed ID: 32006194 [TBL] [Abstract][Full Text] [Related]
20. Simple model of a planar undulating magnetic microswimmer. Gutman E; Or Y Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013012. PubMed ID: 25122374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]