These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 25768610)
1. Azimuthal field instability in a confined ferrofluid. Dias EO; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023020. PubMed ID: 25768610 [TBL] [Abstract][Full Text] [Related]
2. Interfacial patterns in magnetorheological fluids: Azimuthal field-induced structures. Dias EO; Lira SA; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023003. PubMed ID: 26382499 [TBL] [Abstract][Full Text] [Related]
3. Ferrofluid patterns in Hele-Shaw cells: Exact, stable, stationary shape solutions. Lira SA; Miranda JA Phys Rev E; 2016 Jan; 93(1):013129. PubMed ID: 26871176 [TBL] [Abstract][Full Text] [Related]
4. Shape instabilities in confined ferrofluids under crossed magnetic fields. Oliveira RM; Coutinho ÍM; Anjos PHA; Miranda JA Phys Rev E; 2021 Dec; 104(6-2):065113. PubMed ID: 35030845 [TBL] [Abstract][Full Text] [Related]
5. Wrinkling and folding patterns in a confined ferrofluid droplet with an elastic interface. Anjos PHA; Carvalho GD; Lira SA; Miranda JA Phys Rev E; 2019 Feb; 99(2-1):022608. PubMed ID: 30934336 [TBL] [Abstract][Full Text] [Related]
6. Weakly nonlinear study of normal-field instability in confined ferrofluids. Lira SA; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016303. PubMed ID: 21867300 [TBL] [Abstract][Full Text] [Related]
7. Magnetically induced interfacial instabilities in a ferrofluid annulus. Livera POS; Anjos PHA; Miranda JA Phys Rev E; 2021 Dec; 104(6-2):065103. PubMed ID: 35030922 [TBL] [Abstract][Full Text] [Related]
8. Stationary shapes of confined rotating magnetic liquid droplets. Lira SA; Miranda JA; Oliveira RM Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036318. PubMed ID: 21230182 [TBL] [Abstract][Full Text] [Related]
9. Stretching of a confined ferrofluid: influence of viscous stresses and magnetic field. Oliveira RM; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036309. PubMed ID: 16605653 [TBL] [Abstract][Full Text] [Related]
10. Ferrofluid patterns in a radial magnetic field: linear stability, nonlinear dynamics, and exact solutions. Oliveira RM; Miranda JA; Leandro ES Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016304. PubMed ID: 18351931 [TBL] [Abstract][Full Text] [Related]
11. Time-dependent gap Hele-Shaw cell with a ferrofluid: evidence for an interfacial singularity inhibition by a magnetic field. Miranda JA; Oliveira RM Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066312. PubMed ID: 15244731 [TBL] [Abstract][Full Text] [Related]
12. Stationary patterns in centrifugally driven interfacial elastic fingering. Carvalho GD; Gadêlha H; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063009. PubMed ID: 25615189 [TBL] [Abstract][Full Text] [Related]
13. Finger competition in lifting Hele-Shaw flows with a yield stress fluid. Fontana JV; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):023001. PubMed ID: 24032918 [TBL] [Abstract][Full Text] [Related]
14. Ferrofluid annulus in crossed magnetic fields. Livera POS; Anjos PHA; Miranda JA Phys Rev E; 2022 Apr; 105(4-2):045106. PubMed ID: 35590587 [TBL] [Abstract][Full Text] [Related]
15. Field-induced patterns in confined magnetorheological fluids. Lira SA; Miranda JA; Oliveira RM Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046303. PubMed ID: 20481823 [TBL] [Abstract][Full Text] [Related]
16. Radial viscous fingering: wetting film effects on pattern-forming mechanisms. Anjos PH; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053003. PubMed ID: 24329347 [TBL] [Abstract][Full Text] [Related]
17. Controlling fingering instabilities in rotating ferrofluids. Jackson DP; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):017301. PubMed ID: 12636637 [TBL] [Abstract][Full Text] [Related]
18. Rotating hele-shaw cells with ferrofluids. Miranda JA Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt B):2985-8. PubMed ID: 11088789 [TBL] [Abstract][Full Text] [Related]
19. Hybrid ferrohydrodynamic instability: coexisting peak and labyrinthine patterns. Chen CY; Tsai WK; Miranda JA Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056306. PubMed ID: 18643160 [TBL] [Abstract][Full Text] [Related]
20. Tuning a magnetic field to generate spinning ferrofluid droplets with controllable speed via nonlinear periodic interfacial waves. Yu Z; Christov IC Phys Rev E; 2021 Jan; 103(1-1):013103. PubMed ID: 33601568 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]