These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

483 related articles for article (PubMed ID: 25768636)

  • 1. Analysis and improvement of Brinkman lattice Boltzmann schemes: bulk, boundary, interface. Similarity and distinctness with finite elements in heterogeneous porous media.
    Ginzburg I; Silva G; Talon L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023307. PubMed ID: 25768636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implicit-correction-based immersed boundary-lattice Boltzmann method with two relaxation times.
    Seta T; Rojas R; Hayashi K; Tomiyama A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023307. PubMed ID: 25353605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consistent lattice Boltzmann schemes for the Brinkman model of porous flow and infinite Chapman-Enskog expansion.
    Ginzburg I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066704. PubMed ID: 18643394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the non-Newtonian lattice Boltzmann model coupled with off-grid bounce-back scheme: Wall shear stress distributions in Ostwald-de Waele fluids flow.
    Vaseghnia H; Jettestuen E; Giljarhus KET; Aursjø O; Hiorth A
    Phys Rev E; 2024 Jul; 110(1-2):015305. PubMed ID: 39160911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis and assessment of the no-slip and slip boundary conditions for the discrete unified gas kinetic scheme.
    Yang L; Yu Y; Yang L; Hou G
    Phys Rev E; 2020 Feb; 101(2-1):023312. PubMed ID: 32168627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unified directional parabolic-accurate lattice Boltzmann boundary schemes for grid-rotated narrow gaps and curved walls in creeping and inertial fluid flows.
    Ginzburg I; Silva G; Marson F; Chopard B; Latt J
    Phys Rev E; 2023 Feb; 107(2-2):025303. PubMed ID: 36932550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extending a Gray Lattice Boltzmann Model for Simulating Fluid Flow in Multi-Scale Porous Media.
    Zhu J; Ma J
    Sci Rep; 2018 Apr; 8(1):5826. PubMed ID: 29643461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boundary slip from the immersed boundary lattice Boltzmann models.
    Le G; Zhang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 2):026701. PubMed ID: 19391868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrete effects on boundary conditions of the lattice Boltzmann method for fluid flows with curved no-slip walls.
    Wang L; Tao S; Meng X; Zhang K; Lu G
    Phys Rev E; 2020 Jun; 101(6-1):063307. PubMed ID: 32688558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations.
    Luo LS; Liao W; Chen X; Peng Y; Zhang W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056710. PubMed ID: 21728696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice Boltzmann formulation for conjugate heat transfer in heterogeneous media.
    Karani H; Huber C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023304. PubMed ID: 25768633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multireflection boundary conditions for lattice Boltzmann models.
    Ginzburg I; d'Humières D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 2):066614. PubMed ID: 14754343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts.
    Zu YQ; He S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043301. PubMed ID: 23679542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reviving the local second-order boundary approach within the two-relaxation-time lattice Boltzmann modelling.
    Silva G; Ginzburg I
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190404. PubMed ID: 32564717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved bounce-back methods for no-slip walls in lattice-Boltzmann schemes: theory and simulations.
    Rohde M; Kandhai D; Derksen JJ; Van den Akker HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066703. PubMed ID: 16241376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels.
    Su W; Lindsay S; Liu H; Wu L
    Phys Rev E; 2017 Aug; 96(2-1):023309. PubMed ID: 28950559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of the moments in advection-diffusion lattice Boltzmann method. I. Truncation dispersion, skewness, and kurtosis.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013304. PubMed ID: 28208379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.