These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 25768655)

  • 41. MnFe2O4@C Nanofibers as High-Performance Anode for Sodium-Ion Batteries.
    Liu Y; Zhang N; Yu C; Jiao L; Chen J
    Nano Lett; 2016 May; 16(5):3321-8. PubMed ID: 27050390
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Carbon nanotube-loaded electrospun LiFePO4/carbon composite nanofibers as stable and binder-free cathodes for rechargeable lithium-ion batteries.
    Toprakci O; Toprakci HA; Ji L; Xu G; Lin Z; Zhang X
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1273-80. PubMed ID: 22301674
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Three-Dimensional Nanofibrous Air Electrode Assembled With Carbon Nanotubes-Bridged Hollow Fe
    Jung JW; Jang JS; Yun TG; Yoon KR; Kim ID
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6531-6540. PubMed ID: 29381322
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A core-shell nanohollow-γ-Fe2O3@graphene hybrid prepared through the Kirkendall process as a high performance anode material for lithium ion batteries.
    Hu J; Zheng J; Tian L; Duan Y; Lin L; Cui S; Peng H; Liu T; Guo H; Wang X; Pan F
    Chem Commun (Camb); 2015 May; 51(37):7855-8. PubMed ID: 25854495
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of Carbon Coating on the Physicochemical and Electrochemical Properties of Fe2O3 Nanoparticles for Anode Application in High Performance Lithium Ion Batteries.
    Iturrondobeitia A; Goñi A; Orue I; Gil de Muro I; Lezama L; Doeff MM; Rojo T
    Inorg Chem; 2015 Jun; 54(11):5239-48. PubMed ID: 25985317
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Multiphase and Double-Layer NiFe2O4@NiO-Hollow-Nanosphere-Decorated Reduced Graphene Oxide Composite Powders Prepared by Spray Pyrolysis Applying Nanoscale Kirkendall Diffusion.
    Park GD; Cho JS; Kang YC
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16842-9. PubMed ID: 26186601
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New synthesis of a Foamlike Fe3O4/C composite via a self-expanding process and its electrochemical performance as anode material for lithium-ion batteries.
    Wu F; Huang R; Mu D; Wu B; Chen S
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):19254-64. PubMed ID: 25285603
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Helical carbon nanofibers modified with Fe
    Qing T; Liu N; Jin Y; Chen G; Min D
    Dalton Trans; 2021 May; 50(17):5819-5827. PubMed ID: 33949522
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In Situ Synthesis and Characterization of Ge Embedded Electrospun Carbon Nanostructures as High Performance Anode Material for Lithium-Ion Batteries.
    Lee YW; Kim DM; Kim SJ; Kim MC; Choe HS; Lee KH; Sohn JI; Cha SN; Kim JM; Park KW
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7022-9. PubMed ID: 26895137
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of core-shell α-Fe(2)O(3)@ Li(4)Ti(5)O(12) composite and its application in the lithium ion batteries.
    Chen M; Li W; Shen X; Diao G
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4514-23. PubMed ID: 24598727
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Highly reversible lithium storage in Si (core)-hollow carbon nanofibers (sheath) nanocomposites.
    Wang J; Yu Y; Gu L; Wang C; Tang K; Maier J
    Nanoscale; 2013 Apr; 5(7):2647-50. PubMed ID: 23446310
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Embedding amorphous lithium vanadate into carbon nanofibers by electrospinning as a high-performance anode material for lithium-ion batteries.
    Liu T; Yao T; Li L; Zhu L; Wang J; Li F; Wang H
    J Colloid Interface Sci; 2020 Nov; 580():21-29. PubMed ID: 32679364
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis of MoS2 @C Nanotubes Via the Kirkendall Effect with Enhanced Electrochemical Performance for Lithium Ion and Sodium Ion Batteries.
    Zhang X; Li X; Liang J; Zhu Y; Qian Y
    Small; 2016 May; 12(18):2484-91. PubMed ID: 26997521
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rational design of void-involved Si@TiO2 nanospheres as high-performance anode material for lithium-ion batteries.
    Fang S; Shen L; Xu G; Nie P; Wang J; Dou H; Zhang X
    ACS Appl Mater Interfaces; 2014 May; 6(9):6497-503. PubMed ID: 24713042
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lithium-ion storage performances of sunflower-like and nano-sized hollow SnO
    Park GD; Kim JH; Kang YC
    Nanoscale; 2018 Jul; 10(28):13531-13538. PubMed ID: 29974113
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries.
    Zhu X; Zhu Y; Murali S; Stoller MD; Ruoff RS
    ACS Nano; 2011 Apr; 5(4):3333-8. PubMed ID: 21443243
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly porous structure strategy to improve the SnO2 electrode performance for lithium-ion batteries.
    Yang T; Lu B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4115-21. PubMed ID: 24448608
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carbon/two-dimensional MoTe
    Cho JS; Ju HS; Lee JK; Kang YC
    Nanoscale; 2017 Feb; 9(5):1942-1950. PubMed ID: 28098302
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amorphous boron nanorod as an anode material for lithium-ion batteries at room temperature.
    Deng C; Lau ML; Barkholtz HM; Xu H; Parrish R; Xu MO; Xu T; Liu Y; Wang H; Connell JG; Smith KA; Xiong H
    Nanoscale; 2017 Aug; 9(30):10757-10763. PubMed ID: 28715023
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Conducting additive-free amorphous GeO2/C composite as a high capacity and long-term stability anode for lithium ion batteries.
    Ngo DT; Kalubarme RS; Le HT; Park CN; Park CJ
    Nanoscale; 2015 Feb; 7(6):2552-60. PubMed ID: 25579776
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.