These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 25768759)

  • 1. Transverse wobbling in ^{135}pr.
    Matta JT; Garg U; Li W; Frauendorf S; Ayangeakaa AD; Patel D; Schlax KW; Palit R; Saha S; Sethi J; Trivedi T; Ghugre SS; Raut R; Sinha AK; Janssens RV; Zhu S; Carpenter MP; Lauritsen T; Seweryniak D; Chiara CJ; Kondev FG; Hartley DJ; Petrache CM; Mukhopadhyay S; Lakshmi DV; Raju MK; Madhusudhana Rao PV; Tandel SK; Ray S; Dönau F
    Phys Rev Lett; 2015 Feb; 114(8):082501. PubMed ID: 25768759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First Observation of Multiple Transverse Wobbling Bands of Different Kinds in ^{183}Au.
    Nandi S; Mukherjee G; Chen QB; Frauendorf S; Banik R; Bhattacharya S; Dar S; Bhattacharyya S; Bhattacharya C; Chatterjee S; Das S; Samanta S; Raut R; Ghugre SS; Rajbanshi S; Ali S; Pai H; Asgar MA; Das Gupta S; Chowdhury P; Goswami A
    Phys Rev Lett; 2020 Sep; 125(13):132501. PubMed ID: 33034500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental Evidence for Transverse Wobbling in ^{105}Pd.
    Timár J; Chen QB; Kruzsicz B; Sohler D; Kuti I; Zhang SQ; Meng J; Joshi P; Wadsworth R; Starosta K; Algora A; Bednarczyk P; Curien D; Dombrádi Z; Duchêne G; Gizon A; Gizon J; Jenkins DG; Koike T; Krasznahorkay A; Molnár J; Nyakó BM; Paul ES; Rainovski G; Scheurer JN; Simons AJ; Vaman C; Zolnai L
    Phys Rev Lett; 2019 Feb; 122(6):062501. PubMed ID: 30822069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A composite chiral pair of rotational bands in the odd-A nucleus 135Nd.
    Zhu S; Garg U; Nayak BK; Ghugre SS; Pattabiraman NS; Fossan DB; Koike T; Starosta K; Vaman C; Janssens RV; Chakrawarthy RS; Whitehead M; Macchiavelli AO; Frauendorf S
    Phys Rev Lett; 2003 Sep; 91(13):132501. PubMed ID: 14525299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for second-phonon nuclear wobbling.
    Jensen DR; Hagemann GB; Hamamoto I; Ødegård SW; Herskind B; Sletten G; Wilson JN; Spohr K; Hübel H; Bringel P; Neusser A; Schönwasser G; Singh AK; Ma WC; Amro H; Bracco A; Leoni S; Benzoni G; Maj A; Petrache CM; Bianco GL; Bednarczyk P; Curien D
    Phys Rev Lett; 2002 Sep; 89(14):142503. PubMed ID: 12366039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Longitudinal Wobbling Motion in ^{187}Au.
    Sensharma N; Garg U; Chen QB; Frauendorf S; Burdette DP; Cozzi JL; Howard KB; Zhu S; Carpenter MP; Copp P; Kondev FG; Lauritsen T; Li J; Seweryniak D; Wu J; Ayangeakaa AD; Hartley DJ; Janssens RVF; Forney AM; Walters WB; Ghugre SS; Palit R
    Phys Rev Lett; 2020 Feb; 124(5):052501. PubMed ID: 32083900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic Rotation in the A = 80 Region: M1 Bands in Heavy Rb Isotopes.
    Schwengner R; Schnare H; Frauendorf S; Dönau F; Käubler L; Prade H; Grosse E; Jungclaus A; Lieb KP; Lingk C; Skoda S; Eberth J; de Angelis G; Gadea A; Farnea E; Napoli DR; Ur CA; Bianco GL
    J Res Natl Inst Stand Technol; 2000; 105(1):133-6. PubMed ID: 27551597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the wobbling mode in nuclei.
    Odegård SW; Hagemann GB; Jensen DR; Bergström M; Herskind B; Sletten G; Törmänen S; Wilson JN; Tjøm PO; Hamamoto I; Spohr K; Hübel H; Görgen A; Schönwasser G; Bracco A; Leoni S; Maj A; Petrache CM; Bednarczyk P; Curien D
    Phys Rev Lett; 2001 Jun; 86(26 Pt 1):5866-9. PubMed ID: 11415381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for Chiral Wobbler in Nuclei.
    Guo RJ; Wang SY; Liu C; Bark RA; Meng J; Zhang SQ; Qi B; Rohilla A; Li ZH; Hua H; Chen QB; Jia H; Lu X; Wang S; Sun DP; Han XC; Xu WZ; Wang EH; Bai HF; Li M; Jones P; Sharpey-Schafer JF; Wiedeking M; Shirinda O; Brits CP; Malatji KL; Dinoko T; Ndayishimye J; Mthembu S; Jongile S; Sowazi K; Kutlwano S; Bucher TD; Roux DG; Netshiya AA; Mdletshe L; Noncolela S; Mtshali W
    Phys Rev Lett; 2024 Mar; 132(9):092501. PubMed ID: 38489643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-consistent tilted-axis-cranking study of triaxial strongly deformed bands in 158Er at ultrahigh spin.
    Shi Y; Dobaczewski J; Frauendorf S; Nazarewicz W; Pei JC; Xu FR; Nikolov N
    Phys Rev Lett; 2012 Mar; 108(9):092501. PubMed ID: 22463627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental verification of dose calculation using the simplified Monte Carlo method with an improved initial beam model for a beam-wobbling system.
    Tansho R; Takada Y; Kohno R; Hotta K; Hara Y; Mizutani S; Akimoto T
    Phys Med Biol; 2013 Sep; 58(17):6047-64. PubMed ID: 23939011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonantly driven wobbling kinks.
    Oxtoby OF; Barashenkov IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026609. PubMed ID: 19792274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimagnetic rotation band in nuclei: a microscopic description.
    Zhao PW; Peng J; Liang HZ; Ring P; Meng J
    Phys Rev Lett; 2011 Sep; 107(12):122501. PubMed ID: 22026766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A chain kinematic model to assess the movement of lower-limb including wobbling masses.
    Thouzé A; Monnet T; Bélaise C; Lacouture P; Begon M
    Comput Methods Biomech Biomed Engin; 2016; 19(7):707-16. PubMed ID: 26214052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum phases of dipolar rotors on two-dimensional lattices.
    Abolins BP; Zillich RE; Whaley KB
    J Chem Phys; 2018 Mar; 148(10):102338. PubMed ID: 29544271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of beam wobbling methods for heavy-ion radiotherapy.
    Yonai S; Kanematsu N; Komori M; Kanai T; Takei Y; Takahashi O; Isobe Y; Tashiro M; Koikegami H; Tomita H
    Med Phys; 2008 Mar; 35(3):927-38. PubMed ID: 18404929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bistable gaits and wobbling induced by pedestrian-bridge interactions.
    Belykh IV; Jeter R; Belykh VN
    Chaos; 2016 Nov; 26(11):116314. PubMed ID: 27908016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SU-E-T-488: Dose Calculation Model Using the Simplified Monte Carlo Method with an Initial Beam Model Adapted to a Beam-Wobbling System.
    Tansho R; Kohno R; Takada Y; Hotta K; Hara Y; Nagafuchi K; Suzuki Y; Akimoto T
    Med Phys; 2012 Jun; 39(6Part17):3817. PubMed ID: 28517459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analogies of the classical Euler top with a rotor to spin squeezing and quantum phase transitions in a generalized Lipkin-Meshkov-Glick model.
    Opatrný T; Richterek L; Opatrný M
    Sci Rep; 2018 Jan; 8(1):1984. PubMed ID: 29386576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soft tissue contributions to impact forces simulated using a four-segment wobbling mass model of forefoot-heel landings.
    Gittoes MJ; Brewin MA; Kerwin DG
    Hum Mov Sci; 2006 Dec; 25(6):775-87. PubMed ID: 16879889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.