These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 25768772)

  • 1. Impact of electron-hole correlations on the 1T-TiSe_{2} electronic structure.
    Monney G; Monney C; Hildebrand B; Aebi P; Beck H
    Phys Rev Lett; 2015 Feb; 114(8):086402. PubMed ID: 25768772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproduction of the Charge Density Wave Phase Diagram in 1T-TiSe_{2} Exposes its Excitonic Character.
    Chen C; Singh B; Lin H; Pereira VM
    Phys Rev Lett; 2018 Nov; 121(22):226602. PubMed ID: 30547625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Domain Walls in the Incommensurate Charge Density Wave State of Cu Intercalated 1T-TiSe_{2}.
    Yan S; Iaia D; Morosan E; Fradkin E; Abbamonte P; Madhavan V
    Phys Rev Lett; 2017 Mar; 118(10):106405. PubMed ID: 28339234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping of electron-hole excitations in the charge-density-wave system 1T-TiSe2 using resonant inelastic x-ray scattering.
    Monney C; Zhou KJ; Cercellier H; Vydrova Z; Garnier MG; Monney G; Strocov VN; Berger H; Beck H; Schmitt T; Aebi P
    Phys Rev Lett; 2012 Jul; 109(4):047401. PubMed ID: 23006106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling Hidden Charge Density Wave Phases in 1T-TiSe_{2}.
    Nie Z; Wang Y; Chen D; Meng S
    Phys Rev Lett; 2023 Nov; 131(19):196401. PubMed ID: 38000430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the electronic structure of 1T-Cu(x)TiSe(2).
    Zhao JF; Ou HW; Wu G; Xie BP; Zhang Y; Shen DW; Wei J; Yang LX; Dong JK; Arita M; Namatame H; Taniguchi M; Chen XH; Feng DL
    Phys Rev Lett; 2007 Oct; 99(14):146401. PubMed ID: 17930690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resonant photoemission at the L3 absorption edge of Mn and Ti and the electronic structure of 1T-Mn0.2TiSe2.
    Yablonskikh MV; Shkvarin AS; Yarmoshenko YM; Skorikov NA; Titov AN
    J Phys Condens Matter; 2012 Feb; 24(4):045504. PubMed ID: 22217478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure-driven semiconducting-semimetallic transition in SnSe.
    Yan J; Ke F; Liu C; Wang L; Wang Q; Zhang J; Li G; Han Y; Ma Y; Gao C
    Phys Chem Chem Phys; 2016 Feb; 18(6):5012-8. PubMed ID: 26812067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron-phonon coupling and the soft phonon mode in TiSe2.
    Weber F; Rosenkranz S; Castellan JP; Osborn R; Karapetrov G; Hott R; Heid R; Bohnen KP; Alatas A
    Phys Rev Lett; 2011 Dec; 107(26):266401. PubMed ID: 22243169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stripe and Short Range Order in the Charge Density Wave of 1T-Cu_{x}TiSe_{2}.
    Novello AM; Spera M; Scarfato A; Ubaldini A; Giannini E; Bowler DR; Renner C
    Phys Rev Lett; 2017 Jan; 118(1):017002. PubMed ID: 28106462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clocking the melting transition of charge and lattice order in 1T-TaS2 with ultrafast extreme-ultraviolet angle-resolved photoemission spectroscopy.
    Petersen JC; Kaiser S; Dean N; Simoncig A; Liu HY; Cavalieri AL; Cacho C; Turcu IC; Springate E; Frassetto F; Poletto L; Dhesi SS; Berger H; Cavalleri A
    Phys Rev Lett; 2011 Oct; 107(17):177402. PubMed ID: 22107580
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-hole symmetry in a semiconducting carbon nanotube quantum dot.
    Jarillo-Herrero P; Sapmaz S; Dekker C; Kouwenhoven LP; Van Der Zant HS
    Nature; 2004 May; 429(6990):389-92. PubMed ID: 15164056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semimetal-to-semimetal charge density wave transition in 1T-TiSe(2).
    Li G; Hu WZ; Qian D; Hsieh D; Hasan MZ; Morosan E; Cava RJ; Wang NL
    Phys Rev Lett; 2007 Jul; 99(2):027404. PubMed ID: 17678260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1T-TiSe2: semimetal or semiconductor?
    Rasch JC; Stemmler T; Müller B; Dudy L; Manzke R
    Phys Rev Lett; 2008 Dec; 101(23):237602. PubMed ID: 19113593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure induced superconductivity in pristine 1T-TiSe2.
    Kusmartseva AF; Sipos B; Berger H; Forró L; Tutis E
    Phys Rev Lett; 2009 Dec; 103(23):236401. PubMed ID: 20366159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fermi surface and anisotropic spin-orbit coupling of Sb(111) studied by angle-resolved photoemission spectroscopy.
    Sugawara K; Sato T; Souma S; Takahashi T; Arai M; Sasaki T
    Phys Rev Lett; 2006 Feb; 96(4):046411. PubMed ID: 16486864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phonon-induced many-body renormalization of the electronic properties of graphene.
    Tse WK; Das Sarma S
    Phys Rev Lett; 2007 Dec; 99(23):236802. PubMed ID: 18233392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes.
    Perebeinos V; Avouris P
    Phys Rev Lett; 2008 Aug; 101(5):057401. PubMed ID: 18764429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiometric, electronic, and transient absorptive spectroscopic properties of oxidized single-walled carbon nanotubes helically wrapped by ionic, semiconducting polymers in aqueous and organic media.
    Deria P; Olivier JH; Park J; Therien MJ
    J Am Chem Soc; 2014 Oct; 136(40):14193-9. PubMed ID: 25211354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.