These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25768934)

  • 1. Enhanced photoelectrocatalytic decomposition of copper cyanide complexes and simultaneous recovery of copper with a Bi2MoO6 electrode under visible light by EDTA/K4P2O7.
    Zhao X; Zhang J; Qiao M; Liu H; Qu J
    Environ Sci Technol; 2015 Apr; 49(7):4567-74. PubMed ID: 25768934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoelectrocatalytic degradation of Ag-cyanide complexes and synchronous recovery of metallic Ag driven by TiO
    Mao R; Di S; Wang Y; Zhao X
    Chemosphere; 2020 Mar; 242():125156. PubMed ID: 31698212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoelectrocatalytic oxidation of Cu(II)-EDTA at the TiO2 electrode and simultaneous recovery of Cu(II) by electrodeposition.
    Zhao X; Guo L; Zhang B; Liu H; Qu J
    Environ Sci Technol; 2013 May; 47(9):4480-8. PubMed ID: 23521338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activated sludge respirometry to assess solar detoxification of a metal finishing effluent.
    Santos-Juanes L; Amat AM; Arques A; Bernabeu A; Silvestre M; Vicente R; Añó E
    J Hazard Mater; 2008 May; 153(3):905-10. PubMed ID: 17950998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Enhanced Photoelectrocatalytic Oxidation of Cu(CN)
    Dang CZ; Li YB; Wang YB; Zhao X
    Huan Jing Ke Xue; 2018 Jan; 39(1):145-151. PubMed ID: 29965676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of Cu(II)-EDTA complex using TiO2/solar light: the effect of operational parameters and feasibility of solar light application.
    Cho IH; Shin IS; Yang JK; Lee SM; Shin WT
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(6):1027-41. PubMed ID: 16760083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of cyanides by electrooxidation.
    Szpyrkowicz L; Ricci F; Daniele S
    Ann Chim; 2003; 93(9-10):833-40. PubMed ID: 14672377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual electrodes degradation of Amaranth using a thin-film photocatalytic reactor with dual slant-placed electrodes.
    Xu YL; Li JX; Zhong DJ; Jia JP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(13):1700-6. PubMed ID: 23947709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the catalytic films formed on stainless steel anodes employed for the electrochemical treatment of cuprocyanide wastewaters.
    Szpyrkowicz L; Ricci F; Montemor MF; Souto RM
    J Hazard Mater; 2005 Mar; 119(1-3):145-52. PubMed ID: 15752859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper(II)-EDTA sorption onto chitosan and its regeneration applying electrolysis.
    Gyliene O; Nivinskiene O; Razmute I
    J Hazard Mater; 2006 Oct; 137(3):1430-7. PubMed ID: 16766122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced Photoelectrocatalytic Decomplexation of Cu-EDTA and Cu Recovery by Persulfate Activated by UV and Cathodic Reduction.
    Zeng H; Liu S; Chai B; Cao D; Wang Y; Zhao X
    Environ Sci Technol; 2016 Jun; 50(12):6459-66. PubMed ID: 27213917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of ethylenediaminetetraacetate on the oxidation of cyanide in an electrochemical process.
    Osathaphan K; Chucherdwatanasak B; Rachdawong P; Sharma VK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Feb; 43(3):295-9. PubMed ID: 18205061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective oxidation decomplexation of Cu-EDTA and Cu
    Sun M; Liu X; Liu Z
    Environ Sci Pollut Res Int; 2024 Apr; 31(20):30072-30084. PubMed ID: 38594564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoelectrocatalytic/photoelectro-Fenton coupling system using a nanostructured photoanode for the oxidation of a textile dye: Kinetics study and oxidation pathway.
    Almeida LC; Silva BF; Zanoni MV
    Chemosphere; 2015 Oct; 136():63-71. PubMed ID: 25935699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferrate(VI) oxidation of cyanide in water.
    Costarramone N; Kneip A; Castetbon A
    Environ Technol; 2004 Aug; 25(8):945-55. PubMed ID: 15366562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation mechanism of cyanide in water using a UV-LED/H
    Kim TK; Kim T; Jo A; Park S; Choi K; Zoh KD
    Chemosphere; 2018 Oct; 208():441-449. PubMed ID: 29886332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneous catalytic degradation of cyanide using copper-impregnated pumice and hydrogen peroxide.
    Kitis M; Karakaya E; Yigit NO; Civelekoglu G; Akcil A
    Water Res; 2005 Apr; 39(8):1652-62. PubMed ID: 15878038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a visible light driven photo-electrochemical/electro-Fenton coupling oxidation system for wastewater treatment.
    Ding X; Ai Z; Zhang L
    J Hazard Mater; 2012 Nov; 239-240():233-40. PubMed ID: 23017238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Destruction of cyanide in aqueous waste by electrochemical oxidation.
    Priya N; Palanivelu K
    Ann Chim; 2003; 93(9-10):811-5. PubMed ID: 14672374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of cyanide in aqueous solution by oxidation with hydrogen peroxide catalyzed by copper oxide.
    Amaouche H; Chergui S; Halet F; Yeddou AR; Chergui A; Nadjemi B; Ould-Dris A
    Water Sci Technol; 2019 Jul; 80(1):126-133. PubMed ID: 31461429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.