These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 25769142)

  • 1. Using Kalman Filtering to Predict Time-Varying Parameters in a Model Predicting Baroreflex Regulation During Head-Up Tilt.
    Matzuka B; Mehlsen J; Tran H; Olufsen MS
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):1992-2000. PubMed ID: 25769142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autonomic nervous system dysfunction in adolescents with postural orthostatic tachycardia syndrome and chronic fatigue syndrome is characterized by attenuated vagal baroreflex and potentiated sympathetic vasomotion.
    Stewart JM
    Pediatr Res; 2000 Aug; 48(2):218-26. PubMed ID: 10926298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An optimal control approach for blood pressure regulation during head-up tilt.
    Williams ND; Mehlsen J; Tran HT; Olufsen MS
    Biol Cybern; 2019 Apr; 113(1-2):149-159. PubMed ID: 30377766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspects of control of the cardiovascular-respiratory system during orthostatic stress induced by lower body negative pressure.
    Kappel F; Fink M; Batzel JJ
    Math Biosci; 2007 Apr; 206(2):273-308. PubMed ID: 16938315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of the dynamic interactions between heart rate and arterial pressure by the cross time-frequency analysis.
    Orini M; Laguna P; Mainardi LT; Bailón R
    Physiol Meas; 2012 Mar; 33(3):315-31. PubMed ID: 22354110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling heart rate regulation--part I: sit-to-stand versus head-up tilt.
    Olufsen MS; Alston AV; Tran HT; Ottesen JT; Novak V
    Cardiovasc Eng; 2008 Jun; 8(2):73-87. PubMed ID: 18064571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling heart rate regulation--part II: parameter identification and analysis.
    Fowler KR; Gray GA; Olufsen MS
    Cardiovasc Eng; 2008 Jun; 8(2):109-19. PubMed ID: 18172764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood pressure and heart rate responses to sudden change of posture during 20 days of simulated microgravity (-6 degrees head-down tilt).
    Haruna Y; Suzuki Y
    J Gravit Physiol; 1997 Jul; 4(2):P37-8. PubMed ID: 11540690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-based parameter estimation using cardiovascular response to orthostatic stress.
    Heldt T; Shim EB; Kamm RD; Mark RG
    Comput Cardiol; 2001; 28():337-40. PubMed ID: 14640093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carotid-cardiac baroreflex function does not influence blood pressure regulation during head-up tilt in humans.
    Ogoh S; Yoshiga CC; Secher NH; Raven PB
    J Physiol Sci; 2006 Jun; 56(3):227-33. PubMed ID: 16839459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cardiovascular dynamics during head-up tilt assessed via pulsatile and non-pulsatile models.
    Williams ND; Brady R; Gilmore S; Gremaud P; Tran HT; Ottesen JT; Mehlsen J; Olufsen MS
    J Math Biol; 2019 Aug; 79(3):987-1014. PubMed ID: 31152210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-varying analysis of heart rate variability signals with a Kalman smoother algorithm.
    Tarvainen MP; Georgiadis SD; Ranta-Aho PO; Karjalainen PA
    Physiol Meas; 2006 Mar; 27(3):225-39. PubMed ID: 16462010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic time course of hemodynamic responses after passive head-up tilt and tilt back to supine position.
    Toska K; Walløe L
    J Appl Physiol (1985); 2002 Apr; 92(4):1671-6. PubMed ID: 11896036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing the effect of respiration in baroreflex sensitivity estimation with adaptive filtering.
    Tiinanen S; Tulppo M; Seppänen T
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):51-9. PubMed ID: 18232346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age dependency and correlation of heart rate variability, blood pressure variability and baroreflex sensitivity.
    Wang SY; Zhang LF; Wang XB; Cheng JH
    J Gravit Physiol; 2000 Jul; 7(2):P145-6. PubMed ID: 12697491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive identification of the total peripheral resistance baroreflex.
    Mukkamala R; Toska K; Cohen RJ
    Am J Physiol Heart Circ Physiol; 2003 Mar; 284(3):H947-59. PubMed ID: 12433656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A practical approach to parameter estimation applied to model predicting heart rate regulation.
    Olufsen MS; Ottesen JT
    J Math Biol; 2013 Jul; 67(1):39-68. PubMed ID: 22588357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Baroreflex sensitivity, blood pressure buffering, and resonance: what are the links? Computer simulation of healthy subjects and heart failure patients.
    van de Vooren H; Gademan MG; Swenne CA; TenVoorde BJ; Schalij MJ; Van der Wall EE
    J Appl Physiol (1985); 2007 Apr; 102(4):1348-56. PubMed ID: 17185500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A mathematical analysis for the cardiovascular control adaptations in chronic renal failure.
    Lerma C; Minzoni A; Infante O; José MV
    Artif Organs; 2004 Apr; 28(4):398-409. PubMed ID: 15084202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of dynamic interactions between cardiovascular signals by time-frequency coherence.
    Orini M; Bailón R; Mainardi LT; Laguna P; Flandrin P
    IEEE Trans Biomed Eng; 2012 Mar; 59(3):663-73. PubMed ID: 22155936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.