These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 25769168)

  • 1. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation.
    Michmizos KP; Rossi S; Castelli E; Cappa P; Krebs HI
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1056-67. PubMed ID: 25769168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pediatric robotic rehabilitation: Current knowledge and future trends in treating children with sensorimotor impairments.
    Michmizos KP; Krebs HI
    NeuroRehabilitation; 2017; 41(1):69-76. PubMed ID: 28505989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pediatric anklebot.
    Krebs HI; Rossi S; Kim SJ; Artemiadis PK; Williams D; Castelli E; Cappa P
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975410. PubMed ID: 22275613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Home-Based Versus Laboratory-Based Robotic Ankle Training for Children With Cerebral Palsy: A Pilot Randomized Comparative Trial.
    Chen K; Wu YN; Ren Y; Liu L; Gaebler-Spira D; Tankard K; Lee J; Song W; Wang M; Zhang LQ
    Arch Phys Med Rehabil; 2016 Aug; 97(8):1237-43. PubMed ID: 26903143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WAKE-Up Exoskeleton to Assist Children With Cerebral Palsy: Design and Preliminary Evaluation in Level Walking.
    Patane F; Rossi S; Del Sette F; Taborri J; Cappa P
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):906-916. PubMed ID: 28092566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Portable Passive Rehabilitation Robot for Upper-Extremity Functional Resistance Training.
    Washabaugh E; Guo J; Chang CK; Remy D; Krishnan C
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):496-508. PubMed ID: 29993459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The New Jersey Institute of Technology Robot-Assisted Virtual Rehabilitation (NJIT-RAVR) system for children with cerebral palsy: a feasibility study.
    Qiu Q; Ramirez DA; Saleh S; Fluet GG; Parikh HD; Kelly D; Adamovich SV
    J Neuroeng Rehabil; 2009 Nov; 6():40. PubMed ID: 19917124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the dynamic impedance of the human arm without a force sensor.
    Dyck M; Tavakoli M
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650349. PubMed ID: 24187168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upper limb robot-assisted therapy in cerebral palsy: a single-blind randomized controlled trial.
    Gilliaux M; Renders A; Dispa D; Holvoet D; Sapin J; Dehez B; Detrembleur C; Lejeune TM; Stoquart G
    Neurorehabil Neural Repair; 2015 Feb; 29(2):183-92. PubMed ID: 25015650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined passive stretching and active movement rehabilitation of lower-limb impairments in children with cerebral palsy using a portable robot.
    Wu YN; Hwang M; Ren Y; Gaebler-Spira D; Zhang LQ
    Neurorehabil Neural Repair; 2011 May; 25(4):378-85. PubMed ID: 21343525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of robotic guidance on sensorimotor control: planning vs. online control?
    Manson GA; Alekhina M; Srubiski SL; Williams CK; Bhattacharjee A; Tremblay L
    NeuroRehabilitation; 2014; 35(4):689-700. PubMed ID: 25318780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ankle control and strength training for children with cerebral palsy using the Rutgers Ankle CP: a case study.
    Cioi D; Kale A; Burdea G; Engsberg J; Janes W; Ross S
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975432. PubMed ID: 22275633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of robotic rehabilitation of ankle impairments in children with cerebral palsy.
    Wu YN; Ren Y; Hwang M; Gaebler-Spira DJ; Zhang LQ
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4481-4. PubMed ID: 21095776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an EMG-ACC-Based Upper Limb Rehabilitation Training System.
    Ling Liu ; Xiang Chen ; Zhiyuan Lu ; Shuai Cao ; De Wu ; Xu Zhang
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):244-253. PubMed ID: 28113559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A robot-based gait training therapy for pediatric population with cerebral palsy: goal setting, proposal and preliminary clinical implementation.
    Bayón C; Martín-Lorenzo T; Moral-Saiz B; Ramírez Ó; Pérez-Somarriba Á; Lerma-Lara S; Martínez I; Rocon E
    J Neuroeng Rehabil; 2018 Jul; 15(1):69. PubMed ID: 30053857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An upper limb robot model of children limb for cerebral palsy neurorehabilitation.
    Pathak Y; Johnson M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1936-9. PubMed ID: 23366294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Not Available].
    Klamroth-Marganska V; Riener R
    Ther Umsch; 2017; 74(9):524-528. PubMed ID: 29583094
    [No Abstract]   [Full Text] [Related]  

  • 18. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects.
    Miao Q; Zhang M; Wang C; Li H
    J Healthc Eng; 2018; 2018():1534247. PubMed ID: 29736230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online adaptive assistance control in robot-based neurorehabilitation therapy.
    Stroppa F; Marcheschi S; Mastronicola N; Loconsole C; Frisoli A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():628-633. PubMed ID: 28813890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Review of Robotics in Neurorehabilitation: Towards an Automated Process for Upper Limb.
    Oña ED; Cano-de la Cuerda R; Sánchez-Herrera P; Balaguer C; Jardón A
    J Healthc Eng; 2018; 2018():9758939. PubMed ID: 29707189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.