These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 25769314)

  • 41. Genetic reduction of mitochondrial complex I function does not lead to loss of dopamine neurons in vivo.
    Kim HW; Choi WS; Sorscher N; Park HJ; Tronche F; Palmiter RD; Xia Z
    Neurobiol Aging; 2015 Sep; 36(9):2617-27. PubMed ID: 26070241
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inflammatory response in Parkinson's disease (Review).
    Yan J; Fu Q; Cheng L; Zhai M; Wu W; Huang L; Du G
    Mol Med Rep; 2014 Nov; 10(5):2223-33. PubMed ID: 25215472
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inflammation in Parkinson's disease: causative or epiphenomenal?
    Hald A; Van Beek J; Lotharius J
    Subcell Biochem; 2007; 42():249-79. PubMed ID: 17612055
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Protective effects of Chunghyuldan against ROS-mediated neuronal cell death in models of Parkinson's disease.
    Kim HG; Ju MS; Kim DH; Hong J; Cho SH; Cho KH; Park W; Lee EH; Kim SY; Oh MS
    Basic Clin Pharmacol Toxicol; 2010 Dec; 107(6):958-64. PubMed ID: 20629656
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neuroinflammation in Parkinson's disease: a target for neuroprotection?
    Hirsch EC; Hunot S
    Lancet Neurol; 2009 Apr; 8(4):382-97. PubMed ID: 19296921
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibition of the leucine-rich repeat protein LINGO-1 enhances survival, structure, and function of dopaminergic neurons in Parkinson's disease models.
    Inoue H; Lin L; Lee X; Shao Z; Mendes S; Snodgrass-Belt P; Sweigard H; Engber T; Pepinsky B; Yang L; Beal MF; Mi S; Isacson O
    Proc Natl Acad Sci U S A; 2007 Sep; 104(36):14430-5. PubMed ID: 17726113
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neuroprotective effects of stemazole in the MPTP-induced acute model of Parkinson's disease: Involvement of the dopamine system.
    Guo Z; Xu S; Du N; Liu J; Huang Y; Han M
    Neurosci Lett; 2016 Mar; 616():152-9. PubMed ID: 26827716
    [TBL] [Abstract][Full Text] [Related]  

  • 48. AAV.shRNA-mediated downregulation of ROCK2 attenuates degeneration of dopaminergic neurons in toxin-induced models of Parkinson's disease in vitro and in vivo.
    Saal KA; Koch JC; Tatenhorst L; Szegő EM; Ribas VT; Michel U; Bähr M; Tönges L; Lingor P
    Neurobiol Dis; 2015 Jan; 73():150-62. PubMed ID: 25283984
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Therapeutic attenuation of mitochondrial dysfunction and oxidative stress in neurotoxin models of Parkinson's disease.
    Stack EC; Ferro JL; Kim J; Del Signore SJ; Goodrich S; Matson S; Hunt BB; Cormier K; Smith K; Matson WR; Ryu H; Ferrante RJ
    Biochim Biophys Acta; 2008 Mar; 1782(3):151-62. PubMed ID: 18206128
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dopamine receptor D3 expressed on CD4+ T cells favors neurodegeneration of dopaminergic neurons during Parkinson's disease.
    González H; Contreras F; Prado C; Elgueta D; Franz D; Bernales S; Pacheco R
    J Immunol; 2013 May; 190(10):5048-56. PubMed ID: 23589621
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Glatiramer acetate could be a potential therapeutic agent for Parkinson's disease through its neuroprotective and anti-inflammatory effects.
    Tsai SJ
    Med Hypotheses; 2007; 69(6):1219-21. PubMed ID: 17548170
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Current opinions and perspectives on the role of immune system in the pathogenesis of Parkinson's disease.
    Panaro MA; Cianciulli A
    Curr Pharm Des; 2012; 18(2):200-8. PubMed ID: 22229581
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neuroinflammation in Parkinson's disease: is there sufficient evidence for mechanism-based interventional therapy?
    Tansey MG; Frank-Cannon TC; McCoy MK; Lee JK; Martinez TN; McAlpine FE; Ruhn KA; Tran TA
    Front Biosci; 2008 Jan; 13():709-17. PubMed ID: 17981581
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Shared cerebral metabolic pathology in non-transgenic animal models of Alzheimer's and Parkinson's disease.
    Barilar JO; Knezovic A; Perhoc AB; Homolak J; Riederer P; Salkovic-Petrisic M
    J Neural Transm (Vienna); 2020 Feb; 127(2):231-250. PubMed ID: 32030485
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gene Dysfunction Mediates Immune Response to Dopaminergic Degeneration in Parkinson's Disease.
    Jiao Z; Zhang W; Chen C; Zhu X; Chen X; Zhou M; Peng G; Liu H; Qiu J; Lin Y; Huang S; Mo M; Yang X; Qu S; Xu P
    ACS Chem Neurosci; 2019 Feb; 10(2):803-811. PubMed ID: 30289236
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Paraquat: the red herring of Parkinson's disease research.
    Miller GW
    Toxicol Sci; 2007 Nov; 100(1):1-2. PubMed ID: 17934192
    [No Abstract]   [Full Text] [Related]  

  • 57. Editorial for the Special Issue "Animal Models of Parkinson's Disease and Related Disorders".
    Imai Y
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32549241
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Insights into Neuroinflammation in Parkinson's Disease: From Biomarkers to Anti-Inflammatory Based Therapies.
    Rocha NP; de Miranda AS; Teixeira AL
    Biomed Res Int; 2015; 2015():628192. PubMed ID: 26295044
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mitochondrial antigen presentation: a mechanism linking Parkinson's disease to autoimmunity.
    Fahmy AM; Boulais J; Desjardins M; Matheoud D
    Curr Opin Immunol; 2019 Jun; 58():31-37. PubMed ID: 30904790
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of neuroinflammation on the pathogenesis of Parkinson's disease.
    Chung YC; Ko HW; Bok E; Park ES; Huh SH; Nam JH; Jin BK
    BMB Rep; 2010 Apr; 43(4):225-32. PubMed ID: 20423606
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.