These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 25769341)
1. Photon-impenetrable, electron-permeable: the carbon nanotube forest as a medium for multiphoton thermal-photoemission. Vahdani Moghaddam M; Yaghoobi P; Sawatzky GA; Nojeh A ACS Nano; 2015 Apr; 9(4):4064-9. PubMed ID: 25769341 [TBL] [Abstract][Full Text] [Related]
2. Multiphoton photoemission from a copper cathode illuminated by ultrashort laser pulses in an RF photoinjector. Musumeci P; Cultrera L; Ferrario M; Filippetto D; Gatti G; Gutierrez MS; Moody JT; Moore N; Rosenzweig JB; Scoby CM; Travish G; Vicario C Phys Rev Lett; 2010 Feb; 104(8):084801. PubMed ID: 20366937 [TBL] [Abstract][Full Text] [Related]
5. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes. Gabor NM Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453 [TBL] [Abstract][Full Text] [Related]
6. Temperature dependence of photoemission characteristics from Al Wang K; Wang G; Chang B; Tran H; Fu R Appl Opt; 2017 Jul; 56(21):6015-6021. PubMed ID: 29047924 [TBL] [Abstract][Full Text] [Related]
7. Geometry dependence of the electrostatic and thermal response of a carbon nanotube during field emission. Sanchez JA; Mengüç MP Nanotechnology; 2008 Feb; 19(7):075702. PubMed ID: 21817650 [TBL] [Abstract][Full Text] [Related]
8. Ultrafast switching of photoemission electron through quantum pathways interference in metallic nanostructure. Lang P; Ji B; Song X; Dou Y; Tao H; Gao X; Hao Z; Lin J Opt Lett; 2018 Dec; 43(23):5721-5724. PubMed ID: 30499977 [TBL] [Abstract][Full Text] [Related]
9. Schottky infrared detectors with optically tunable barriers beyond the internal photoemission limit. Fu J; Guo Z; Nie C; Sun F; Li G; Feng S; Wei X Innovation (Camb); 2024 May; 5(3):100600. PubMed ID: 38510070 [TBL] [Abstract][Full Text] [Related]
10. Coherent multiphoton photoelectron emission from single au nanorods: the critical role of plasmonic electric near-field enhancement. Grubisic A; Schweikhard V; Baker TA; Nesbitt DJ ACS Nano; 2013 Jan; 7(1):87-99. PubMed ID: 23194174 [TBL] [Abstract][Full Text] [Related]
11. Semiconductor thermionics for next generation solar cells: photon enhanced or pure thermionic? Rahman E; Nojeh A Nat Commun; 2021 Jul; 12(1):4622. PubMed ID: 34330924 [TBL] [Abstract][Full Text] [Related]
12. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics. Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377 [TBL] [Abstract][Full Text] [Related]
13. Nanosecond laser pulse-induced electron emission from multiwall carbon nanotube film. Wong TH; Gupta MC; Hernandez-Garcia C Nanotechnology; 2007 Apr; 18(13):135705. PubMed ID: 21730390 [TBL] [Abstract][Full Text] [Related]
14. Thermionic emission and tunneling at carbon nanotube-organic semiconductor interface. Sarker BK; Khondaker SI ACS Nano; 2012 Jun; 6(6):4993-9. PubMed ID: 22559008 [TBL] [Abstract][Full Text] [Related]
15. Superior Photo-thermionic electron Emission from Illuminated Phosphorene Surface. Madas S; Mishra SK; Kahaly S; Kahaly MU Sci Rep; 2019 Jul; 9(1):10307. PubMed ID: 31312007 [TBL] [Abstract][Full Text] [Related]
16. Anomalous intense coherent secondary photoemission from a perovskite oxide. Hong C; Zou W; Ran P; Tanaka K; Matzelle M; Chiu WC; Markiewicz RS; Barbiellini B; Zheng C; Li S; Bansil A; He RH Nature; 2023 May; 617(7961):493-498. PubMed ID: 36889355 [TBL] [Abstract][Full Text] [Related]
17. Combined experimental setup for spin- and angle-resolved direct and inverse photoemission. Budke M; Allmers T; Donath M; Rangelov G Rev Sci Instrum; 2007 Nov; 78(11):113909. PubMed ID: 18052490 [TBL] [Abstract][Full Text] [Related]