BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 25769498)

  • 21. Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells.
    Ong YH; Lim M; Liu Q
    Opt Express; 2012 Sep; 20(20):22158-71. PubMed ID: 23037364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Breast cancer subtype specific biochemical responses to radiation.
    Meksiarun P; Aoki PHB; Van Nest SJ; Sobral-Filho RG; Lum JJ; Brolo AG; Jirasek A
    Analyst; 2018 Aug; 143(16):3850-3858. PubMed ID: 30004539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Screening and staging for non-small cell lung cancer by serum laser Raman spectroscopy.
    Wang H; Zhang S; Wan L; Sun H; Tan J; Su Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Aug; 201():34-38. PubMed ID: 29729529
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Noninvasive estimation of chronological and photoinduced skin damage using Raman spectroscopy and principal component analysis.
    González FJ; Castillo-Martínez C; Martínez-Escanamé M; Ramírez-Elías MG; Gaitan-Gaona FI; Oros-Ovalle C; Moncada B
    Skin Res Technol; 2012 Nov; 18(4):442-6. PubMed ID: 22103432
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Raman spectroscopy of human neuronal and epidermal cells exposed to an insecticide mixture of chlorpyrifos and deltamethrin.
    Lasalvia M; Perna G; Capozzi V
    Appl Spectrosc; 2014; 68(10):1123-31. PubMed ID: 25239064
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Raman spectra exploring breast tissues: comparison of principal component analysis and support vector machine-recursive feature elimination.
    Hu C; Wang J; Zheng C; Xu S; Zhang H; Liang Y; Bi L; Fan Z; Han B; Xu W
    Med Phys; 2013 Jun; 40(6):063501. PubMed ID: 23718612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fourier transform Raman spectroscopy of polyacrylamide gels (PAGs) for radiation dosimetry.
    Baldock C; Rintoul L; Keevil SF; Pope JM; George GA
    Phys Med Biol; 1998 Dec; 43(12):3617-27. PubMed ID: 9869036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Breast cancer detection based on serum sample surface enhanced Raman spectroscopy.
    Vargas-Obieta E; Martínez-Espinosa JC; Martínez-Zerega BE; Jave-Suárez LF; Aguilar-Lemarroy A; González-Solís JL
    Lasers Med Sci; 2016 Sep; 31(7):1317-24. PubMed ID: 27289243
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resonance Raman and Raman spectroscopy for breast cancer detection.
    Liu CH; Zhou Y; Sun Y; Li JY; Zhou LX; Boydston-White S; Masilamani V; Zhu K; Pu Y; Alfano RR
    Technol Cancer Res Treat; 2013 Aug; 12(4):371-82. PubMed ID: 23448574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectral model for diagnosis of acute leukemias in whole blood and plasma through Raman spectroscopy.
    da Silva AM; de Siqueira E Oliveira FSA; de Brito PL; Silveira L
    J Biomed Opt; 2018 Oct; 23(10):1-11. PubMed ID: 30350494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro monitoring of time and dose dependent cytotoxicity of aminated nanoparticles using Raman spectroscopy.
    Efeoglu E; Casey A; Byrne HJ
    Analyst; 2016 Sep; 141(18):5417-31. PubMed ID: 27373561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analyses of ionizing radiation effects in vitro in peripheral blood lymphocytes with Raman spectroscopy.
    Maguire A; Vegacarrascal I; White L; McClean B; Howe O; Lyng FM; Meade AD
    Radiat Res; 2015 Apr; 183(4):407-16. PubMed ID: 25844945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Investigating ionizing radiation-induced changes in breast cancer cells using stimulated Raman scattering microscopy.
    Allen CH; Skillings R; Ahmed D; Sanchez SC; Altwasser K; Hilan G; Willmore WG; Chauhan V; Cassol E; Murugkar S
    J Biomed Opt; 2023 Jul; 28(7):076501. PubMed ID: 37441447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Real-time
    Lin K; Zheng W; Lim CM; Huang Z
    Theranostics; 2017; 7(14):3517-3526. PubMed ID: 28912892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Study on bladder cancer tissues with Raman spectroscopy].
    Wang L; Fan JH; Guan ZF; Liu Y; Zeng J; He DL; Huang LQ; Wang XY; Gong HL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jan; 32(1):123-6. PubMed ID: 22497142
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Raman Spectroscopy: An Exploratory Study to Identify Post-Radiation Cell Survival.
    Pansare K; Raj Singh S; Chakravarthy V; Gupta N; Hole A; Gera P; Sarin R; Murali Krishna C
    Appl Spectrosc; 2020 May; 74(5):553-562. PubMed ID: 32031014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Principal Component Analysis Centering and Scaling on Classification of Mycobacteria from Raman Spectra.
    Hanson C; Sieverts M; Vargis E
    Appl Spectrosc; 2017 Jun; 71(6):1249-1255. PubMed ID: 27888200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro toxicology evaluation of pharmaceuticals using Raman micro-spectroscopy.
    Owen CA; Selvakumaran J; Notingher I; Jell G; Hench LL; Stevens MM
    J Cell Biochem; 2006 Sep; 99(1):178-86. PubMed ID: 16598770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Raman Spectroscopy Combined with Principal Component Analysis for Screening Nasopharyngeal Cancer in Human Blood Sera.
    Khan S; Ullah R; Javaid S; Shahzad S; Ali H; Bilal M; Saleem M; Ahmed M
    Appl Spectrosc; 2017 Nov; 71(11):2497-2503. PubMed ID: 28714322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection of Genomic DNA Damage from Radiated Nasopharyngeal Carcinoma Cells Using Surface-Enhanced Raman Spectroscopy (SERS).
    Ou L; Chen Y; Su Y; Zou C; Chen Z
    Appl Spectrosc; 2016 Nov; 70(11):1821-1830. PubMed ID: 27703049
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.