These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 25769511)

  • 1. An observational near-infrared spectroscopy study on cerebral autoregulation in post-cardiac arrest patients: time to drop 'one-size-fits-all' hemodynamic targets?
    Ameloot K; Genbrugge C; Meex I; Jans F; Boer W; Vander Laenen M; Ferdinande B; Mullens W; Dupont M; Dens J; DeDeyne C
    Resuscitation; 2015 May; 90():121-6. PubMed ID: 25769511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodynamic targets during therapeutic hypothermia after cardiac arrest: A prospective observational study.
    Ameloot K; Meex I; Genbrugge C; Jans F; Boer W; Verhaert D; Mullens W; Ferdinande B; Dupont M; De Deyne C; Dens J
    Resuscitation; 2015 Jun; 91():56-62. PubMed ID: 25828921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of moderate hyperventilation and induced hypertension on cerebral tissue oxygenation after cardiac arrest and therapeutic hypothermia.
    Bouzat P; Suys T; Sala N; Oddo M
    Resuscitation; 2013 Nov; 84(11):1540-5. PubMed ID: 23727361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral Autoregulation Monitoring with Ultrasound-Tagged Near-Infrared Spectroscopy in Cardiac Surgery Patients.
    Hori D; Hogue CW; Shah A; Brown C; Neufeld KJ; Conte JV; Price J; Sciortino C; Max L; Laflam A; Adachi H; Cameron DE; Mandal K
    Anesth Analg; 2015 Nov; 121(5):1187-93. PubMed ID: 26334746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of Near-Infrared Spectroscopy for Monitoring Cerebral Autoregulation in Comatose Patients.
    Rivera-Lara L; Geocadin R; Zorrilla-Vaca A; Healy R; Radzik BR; Palmisano C; Mirski M; Ziai WC; Hogue C
    Neurocrit Care; 2017 Dec; 27(3):362-369. PubMed ID: 28664392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral Autoregulation-Guided Optimal Blood Pressure in Sepsis-Associated Encephalopathy: A Case Series.
    Rosenblatt K; Walker KA; Goodson C; Olson E; Maher D; Brown CH; Nyquist P
    J Intensive Care Med; 2020 Dec; 35(12):1453-1464. PubMed ID: 30760173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are changes in cerebrovascular autoregulation following cardiac arrest associated with neurological outcome? Results of a pilot study.
    Pham P; Bindra J; Chuan A; Jaeger M; Aneman A
    Resuscitation; 2015 Nov; 96():192-8. PubMed ID: 26316278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-invasive Monitoring of Dynamic Cerebrovascular Autoregulation Using Near Infrared Spectroscopy and the Finometer Photoplethysmograph.
    Bindra J; Pham P; Aneman A; Chuan A; Jaeger M
    Neurocrit Care; 2016 Jun; 24(3):442-7. PubMed ID: 26490778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is venous congestion associated with reduced cerebral oxygenation and worse neurological outcome after cardiac arrest?
    Ameloot K; Genbrugge C; Meex I; Eertmans W; Jans F; De Deyne C; Dens J; Mullens W; Ferdinande B; Dupont M
    Crit Care; 2016 May; 20(1):146. PubMed ID: 27179510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Cerebral Autoregulation Patterns with Near-infrared Spectroscopy during Pharmacological-induced Pressure Changes.
    Moerman AT; Vanbiervliet VM; Van Wesemael A; Bouchez SM; Wouters PF; De Hert SG
    Anesthesiology; 2015 Aug; 123(2):327-35. PubMed ID: 26035251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal blood pressure for favorable neurological outcome in adult patients following in-hospital cardiac arrest.
    Wang CH; Huang CH; Chang WT; Tsai MS; Yu PH; Wang AY; Chen NC; Chen WJ
    Int J Cardiol; 2015 Sep; 195():66-72. PubMed ID: 26025859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using the relationship between brain tissue regional saturation of oxygen and mean arterial pressure to determine the optimal mean arterial pressure in patients following cardiac arrest: A pilot proof-of-concept study.
    Sekhon MS; Smielewski P; Bhate TD; Brasher PM; Foster D; Menon DK; Gupta AK; Czosnyka M; Henderson WR; Gin K; Wong G; Griesdale DE
    Resuscitation; 2016 Sep; 106():120-5. PubMed ID: 27255957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass.
    Brady K; Joshi B; Zweifel C; Smielewski P; Czosnyka M; Easley RB; Hogue CW
    Stroke; 2010 Sep; 41(9):1951-6. PubMed ID: 20651274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of wavelet and correlation indices of cerebral autoregulation in a pediatric swine model of cardiac arrest.
    Liu X; Hu X; Brady KM; Koehler R; Smielewski P; Czosnyka M; Donnelly J; Lee JK
    Sci Rep; 2020 Apr; 10(1):5926. PubMed ID: 32245979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deviation From Personalized Blood Pressure Targets Is Associated With Worse Outcome After Subarachnoid Hemorrhage.
    Silverman A; Kodali S; Strander S; Gilmore EJ; Kimmel A; Wang A; Cord B; Falcone G; Hebert R; Matouk C; Sheth KN; Petersen NH
    Stroke; 2019 Oct; 50(10):2729-2737. PubMed ID: 31495332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-Time Intraoperative Determination and Reporting of Cerebral Autoregulation State Using Near-Infrared Spectroscopy.
    Montgomery D; Brown C; Hogue CW; Brady K; Nakano M; Nomura Y; Antunes A; Addison PS
    Anesth Analg; 2020 Nov; 131(5):1520-1528. PubMed ID: 33079875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arterial pressure above the upper cerebral autoregulation limit during cardiopulmonary bypass is associated with postoperative delirium.
    Hori D; Brown C; Ono M; Rappold T; Sieber F; Gottschalk A; Neufeld KJ; Gottesman R; Adachi H; Hogue CW
    Br J Anaesth; 2014 Dec; 113(6):1009-17. PubMed ID: 25256545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous cerebral blood flow autoregulation monitoring in patients undergoing liver transplantation.
    Zheng Y; Villamayor AJ; Merritt W; Pustavoitau A; Latif A; Bhambhani R; Frank S; Gurakar A; Singer A; Cameron A; Stevens RD; Hogue CW
    Neurocrit Care; 2012 Aug; 17(1):77-84. PubMed ID: 22644887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying the optimal blood pressure for cerebral autoregulation in infants after cardiac surgery by monitoring cerebrovascular reactivity-A pilot study.
    Zipfel J; Wikidal B; Schwaneberg B; Schuhmann MU; Magunia H; Hofbeck M; Schlensak C; Schmid S; Neunhoeffer F
    Paediatr Anaesth; 2022 Dec; 32(12):1320-1329. PubMed ID: 36083106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive autoregulation monitoring in a swine model of pediatric cardiac arrest.
    Lee JK; Yang ZJ; Wang B; Larson AC; Jamrogowicz JL; Kulikowicz E; Kibler KK; Mytar JO; Carter EL; Burman HT; Brady KM; Smielewski P; Czosnyka M; Koehler RC; Shaffner DH
    Anesth Analg; 2012 Apr; 114(4):825-36. PubMed ID: 22314692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.