BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 25769838)

  • 1. Computer-Aided Semi-Rational Design to Enhance the Activity of l-Sorbosone Dehydrogenase from
    Li D; Wang X; Huo L; Zeng W; Li J; Zhou J
    J Agric Food Chem; 2024 May; 72(19):10995-11001. PubMed ID: 38701424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Pathways for Production of D-Glucaric Acid by Pseudogluconobacter saccharoketogenes.
    Ito T; Masaki H; Fujita K; Murakami H; Shizuma M; Kiso T; Kiryu T
    Appl Biochem Biotechnol; 2024 Apr; 196(4):1876-1895. PubMed ID: 37440113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yiaE gene, located at 80.1 minutes on the Escherichia coli chromosome, encodes a 2-ketoaldonate reductase.
    Yum DY; Lee BY; Hahm DH; Pan JG
    J Bacteriol; 1998 Nov; 180(22):5984-8. PubMed ID: 9811658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient glycerol transformation by resting Gluconobacter cells.
    Jackson E; Ripoll M; Betancor L
    Microbiologyopen; 2019 Dec; 8(12):e926. PubMed ID: 31532065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and biochemical characterization of the pathway in Pantoea citrea leading to pink disease of pineapple.
    Pujol CJ; Kado CI
    J Bacteriol; 2000 Apr; 182(8):2230-7. PubMed ID: 10735866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of D-Lactate as an Energy Source Supports the Growth of Gluconobacter oxydans.
    Sheng B; Xu J; Zhang Y; Jiang T; Deng S; Kong J; Gao C; Ma C; Xu P
    Appl Environ Microbiol; 2015 Jun; 81(12):4098-110. PubMed ID: 25862219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2,5-Diketo-D-Gluconate Hyperproducing
    Son H; Han SU; Lee K
    Microorganisms; 2022 Oct; 10(11):. PubMed ID: 36363722
    [No Abstract]   [Full Text] [Related]  

  • 8. Development of efficient 5-ketogluconate production system by Gluconobacter japonicus.
    Kataoka N; Naoki K; Ano Y; Matsushita K; Yakushi T
    Appl Microbiol Biotechnol; 2022 Dec; 106(23):7751-7761. PubMed ID: 36271931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Production of 2,5-Diketo-D-gluconic Acid by Reducing Browning Levels During
    Li G; Shan X; Zeng W; Yu S; Zhang G; Chen J; Zhou J
    Front Bioeng Biotechnol; 2022; 10():918277. PubMed ID: 35875491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The industrial versatility of Gluconobacter oxydans: current applications and future perspectives.
    da Silva GAR; Oliveira SSS; Lima SF; do Nascimento RP; Baptista ARS; Fiaux SB
    World J Microbiol Biotechnol; 2022 Jun; 38(8):134. PubMed ID: 35688964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative Fermentation of Acetic Acid Bacteria and Its Products.
    He Y; Xie Z; Zhang H; Liebl W; Toyama H; Chen F
    Front Microbiol; 2022; 13():879246. PubMed ID: 35685922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the way toward regulatable expression systems in acetic acid bacteria: target gene expression and use cases.
    Fricke PM; Klemm A; Bott M; Polen T
    Appl Microbiol Biotechnol; 2021 May; 105(9):3423-3456. PubMed ID: 33856535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Auxiliary NADH Dehydrogenase Plays a Crucial Role in Redox Homeostasis of Nicotinamide Cofactors in the Absence of the Periplasmic Oxidation System in Gluconobacter oxydans NBRC3293.
    Sriherfyna FH; Matsutani M; Hirano K; Koike H; Kataoka N; Yamashita T; Nakamaru-Ogiso E; Matsushita K; Yakushi T
    Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127815
    [No Abstract]   [Full Text] [Related]  

  • 14. X-ray structure of the direct electron transfer-type FAD glucose dehydrogenase catalytic subunit complexed with a hitchhiker protein.
    Yoshida H; Kojima K; Shiota M; Yoshimatsu K; Yamazaki T; Ferri S; Tsugawa W; Kamitori S; Sode K
    Acta Crystallogr D Struct Biol; 2019 Sep; 75(Pt 9):841-851. PubMed ID: 31478907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinatorial metabolic engineering of industrial Gluconobacter oxydans DSM2343 for boosting 5-keto-D-gluconic acid accumulation.
    Yuan J; Wu M; Lin J; Yang L
    BMC Biotechnol; 2016 May; 16(1):42. PubMed ID: 27189063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Production of 2,5-Diketo-d-Gluconate via Heterologous Expression of 2-Ketogluconate Dehydrogenase in Gluconobacter japonicus.
    Kataoka N; Matsutani M; Yakushi T; Matsushita K
    Appl Environ Microbiol; 2015 May; 81(10):3552-60. PubMed ID: 25769838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane-bound, 2-keto-D-gluconate-yielding D-gluconate dehydrogenase from "Gluconobacter dioxyacetonicus" IFO 3271: molecular properties and gene disruption.
    Toyama H; Furuya N; Saichana I; Ano Y; Adachi O; Matsushita K
    Appl Environ Microbiol; 2007 Oct; 73(20):6551-6. PubMed ID: 17720837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ketogluconate production by Gluconobacter strains: enzymes and biotechnological applications.
    Kataoka N
    Biosci Biotechnol Biochem; 2024 Apr; 88(5):499-508. PubMed ID: 38323387
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.