These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 25770045)

  • 1. Highlights of PBTI Coimbra Conference on PRT of Plasma & Current Opinions on Pathogen Reduction Treatment of Blood Components.
    de Sousa G; Seghatchian J
    Transfus Apher Sci; 2015 Apr; 52(2):228-32. PubMed ID: 25770045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Update on pathogen reduction technology for therapeutic plasma: an overview.
    Solheim BG; Seghatchian J
    Transfus Apher Sci; 2006 Aug; 35(1):83-90. PubMed ID: 16934528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayer-strategy to enhance optimal safety of the blood supply: The role of pathogen inactivation for optimizing recipient safety and helping health care cost containment: Moderator views.
    Seghatchian J
    Transfus Apher Sci; 2015 Apr; 52(2):233-6. PubMed ID: 25748230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Update on pathogen inactivation treatment of plasma, with the INTERCEPT Blood System: Current position on methodological, clinical and regulatory aspects.
    Irsch J; Seghatchian J
    Transfus Apher Sci; 2015 Apr; 52(2):240-4. PubMed ID: 25824703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amotosalen: Allogeneic Cellular Immunotherapies system, INTERCEPT Plasma System, INTERCEPT Platelet System, S 59.
    BioDrugs; 2003; 17(1):66-8. PubMed ID: 12534321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The state of the art of removal of prion proteins in SD-FFP, by specific prion affinity chromatography and its impact on the hemostatic characteristics of the product.
    Neisser-Svae A; Seghatchian J
    Transfus Apher Sci; 2015 Apr; 52(2):237-9. PubMed ID: 25748229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogen-reduction systems for blood components: the current position and future trends.
    Seghatchian J; de Sousa G
    Transfus Apher Sci; 2006 Dec; 35(3):189-96. PubMed ID: 17110168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remodelling whole blood processing through automation and pathogen reduction technology at the Luxembourg Red Cross.
    Malvaux N; Schuhmacher A; Defraigne F; Jacob R; Bah A; Cardoso M
    Transfus Apher Sci; 2021 Oct; 60(5):103195. PubMed ID: 34147359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research opportunities for pathogen reduction/inactivation of blood components: summary of an NHLBI workshop.
    Klein HG; Glynn SA; Ness PM; Blajchman MA;
    Transfusion; 2009 Jun; 49(6):1262-8. PubMed ID: 19392769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reflections on the dynamics of bacterial and viral contamination of blood components and the levels of efficacy for pathogen inactivation processes.
    Bah A; Cardoso M; Seghatchian J; Goodrich RP
    Transfus Apher Sci; 2018 Oct; 57(5):683-688. PubMed ID: 30220450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Mirasol PRT system for pathogen reduction of platelets and plasma: an overview of current status and future trends.
    Goodrich RP; Edrich RA; Li J; Seghatchian J
    Transfus Apher Sci; 2006 Aug; 35(1):5-17. PubMed ID: 16935562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Our experience in riboflavin and ultraviolet light pathogen reduction technology for platelets: from platelet production to patient care.
    Jimenez-Marco T; Garcia-Recio M; Girona-Llobera E
    Transfusion; 2018 Aug; 58(8):1881-1889. PubMed ID: 30132911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogen reduction of whole blood: utility and feasibility.
    Allain JP; Goodrich R
    Transfus Med; 2017 Oct; 27 Suppl 5():320-326. PubMed ID: 28875531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparison of Transfusion-Related Adverse Reactions Among Apheresis Platelets, Whole Blood-Derived Platelets, and Platelets Subjected to Pathogen Reduction Technology as Reported to the National Healthcare Safety Network Hemovigilance Module.
    Mowla SJ; Kracalik IT; Sapiano MRP; O'Hearn L; Andrzejewski C; Basavaraju SV
    Transfus Med Rev; 2021 Apr; 35(2):78-84. PubMed ID: 33934903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The six questions of pathogen reduction technology: an overview of current opinions.
    Solheim BG; Seghatchian J
    Transfus Apher Sci; 2008 Aug; 39(1):51-7. PubMed ID: 18614401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pathogen inactivation on the storage lesion in red cells and platelet concentrates.
    Seghatchian J; Hervig T; Putter JS
    Transfus Apher Sci; 2011 Aug; 45(1):75-84. PubMed ID: 21782517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is pathogen reduction an acceptable alternative to irradiation for risk mitigation of transfusion-associated graft versus host disease?
    Li M; Irsch J; Corash L; Benjamin RJ
    Transfus Apher Sci; 2022 Apr; 61(2):103404. PubMed ID: 35288055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathogen inactivation/reduction of platelet concentrates: turning theory into practice.
    Gathof BS; Tauszig ME; Picker SM
    ISBT Sci Ser; 2010 Jul; 5(n1):114-119. PubMed ID: 32328165
    [No Abstract]   [Full Text] [Related]  

  • 19. The patient experience of patient-centered communication with nurses in the hospital setting: a qualitative systematic review protocol.
    Newell S; Jordan Z
    JBI Database System Rev Implement Rep; 2015 Jan; 13(1):76-87. PubMed ID: 26447009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of pathogen reduction technology (Mirasol) on platelet quality when treated in additive solution with low plasma carryover.
    Johnson L; Winter KM; Reid S; Hartkopf-Theis T; Marschner S; Goodrich RP; Marks DC
    Vox Sang; 2011 Oct; 101(3):208-14. PubMed ID: 21492184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.