These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
470 related articles for article (PubMed ID: 25770472)
1. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water. Gai C; Li Y; Peng N; Fan A; Liu Z Bioresour Technol; 2015 Jun; 185():240-5. PubMed ID: 25770472 [TBL] [Abstract][Full Text] [Related]
2. Bio oil production from microalgae via hydrothermal liquefaction technology under subcritical water conditions. Kiran Kumar P; Vijaya Krishna S; Verma K; Pooja K; Bhagawan D; Srilatha K; Himabindu V J Microbiol Methods; 2018 Oct; 153():108-117. PubMed ID: 30248442 [TBL] [Abstract][Full Text] [Related]
3. Biodiesel production from lipids in wet microalgae with microwave irradiation and bio-crude production from algal residue through hydrothermal liquefaction. Cheng J; Huang R; Yu T; Li T; Zhou J; Cen K Bioresour Technol; 2014 Jan; 151():415-8. PubMed ID: 24183493 [TBL] [Abstract][Full Text] [Related]
4. Hydrothermal liquefaction of Litsea cubeba seed to produce bio-oils. Wang F; Chang Z; Duan P; Yan W; Xu Y; Zhang L; Miao J; Fan Y Bioresour Technol; 2013 Dec; 149():509-15. PubMed ID: 24140857 [TBL] [Abstract][Full Text] [Related]
5. Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae. Duan P; Wang B; Xu Y Bioresour Technol; 2015 Jun; 186():58-66. PubMed ID: 25802049 [TBL] [Abstract][Full Text] [Related]
6. Hydrothermal liquefaction of Chlorella pyrenoidosa for bio-oil production over Ce/HZSM-5. Xu Y; Zheng X; Yu H; Hu X Bioresour Technol; 2014 Mar; 156():1-5. PubMed ID: 24472700 [TBL] [Abstract][Full Text] [Related]
7. Co-liquefaction of Chlorella and soybean straw for production of bio-crude: Effects of reusing aqueous phase as the reaction medium. Leng S; Jiao H; Liu T; Pan W; Chen J; Chen J; Huang H; Peng H; Wu Z; Leng L; Zhou W Sci Total Environ; 2022 May; 820():153348. PubMed ID: 35077787 [TBL] [Abstract][Full Text] [Related]
8. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Li H; Liu Z; Zhang Y; Li B; Lu H; Duan N; Liu M; Zhu Z; Si B Bioresour Technol; 2014 Feb; 154():322-9. PubMed ID: 24413449 [TBL] [Abstract][Full Text] [Related]
9. Element and chemical compounds transfer in bio-crude from hydrothermal liquefaction of microalgae. Tang X; Zhang C; Li Z; Yang X Bioresour Technol; 2016 Feb; 202():8-14. PubMed ID: 26700753 [TBL] [Abstract][Full Text] [Related]
10. Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process. Miao C; Chakraborty M; Chen S Bioresour Technol; 2012 Apr; 110():617-27. PubMed ID: 22330592 [TBL] [Abstract][Full Text] [Related]
11. Catalytic hydrothermal liquefaction of water hyacinth. Singh R; Balagurumurthy B; Prakash A; Bhaskar T Bioresour Technol; 2015 Feb; 178():157-165. PubMed ID: 25240515 [TBL] [Abstract][Full Text] [Related]
12. Co-liquefaction of spent coffee grounds and lignocellulosic feedstocks. Yang L; He QS; Havard P; Corscadden K; Xu CC; Wang X Bioresour Technol; 2017 Aug; 237():108-121. PubMed ID: 28279611 [TBL] [Abstract][Full Text] [Related]
13. Response surface optimization of product yields and biofuel quality during fast hydrothermal liquefaction of a highly CO Cao B; Hu S; Zhu K; Pan C; Marrakchi F; Ni J; Yuan C; Qian L; Chen H; Yuan J; Abomohra A; Bartocci P; Fantozzi F; Wang S Sci Total Environ; 2023 Feb; 860():160541. PubMed ID: 36464061 [TBL] [Abstract][Full Text] [Related]
14. Effect of algae (Scenedesmus obliquus) biomass pre-treatment on bio-oil production in hydrothermal liquefaction (HTL): Biochar and aqueous phase utilization studies. Mahima J; Sundaresh RK; Gopinath KP; Rajan PSS; Arun J; Kim SH; Pugazhendhi A Sci Total Environ; 2021 Jul; 778():146262. PubMed ID: 33714809 [TBL] [Abstract][Full Text] [Related]
15. Assessing microalgae biorefinery routes for the production of biofuels via hydrothermal liquefaction. López Barreiro D; Samorì C; Terranella G; Hornung U; Kruse A; Prins W Bioresour Technol; 2014 Dec; 174():256-65. PubMed ID: 25463806 [TBL] [Abstract][Full Text] [Related]
16. Liquefaction of lignocellulosic biomass: solvent, process parameter, and recycle oil screening. van Rossum G; Zhao W; Castellvi Barnes M; Lange JP; Kersten SR ChemSusChem; 2014 Jan; 7(1):253-9. PubMed ID: 24265195 [TBL] [Abstract][Full Text] [Related]
17. Bio-oil production from hydrothermal liquefaction of Pteris vittata L.: Effects of operating temperatures and energy recovery. Chen J Bioresour Technol; 2018 Oct; 265():320-327. PubMed ID: 29909362 [TBL] [Abstract][Full Text] [Related]
18. Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Leng L; Li J; Yuan X; Li J; Han P; Hong Y; Wei F; Zhou W Bioresour Technol; 2018 Mar; 251():49-56. PubMed ID: 29268150 [TBL] [Abstract][Full Text] [Related]
19. Hydrothermal liquefaction of Chlorella pyrenoidosa in sub- and supercritical ethanol with heterogeneous catalysts. Zhang J; Chen WT; Zhang P; Luo Z; Zhang Y Bioresour Technol; 2013 Apr; 133():389-97. PubMed ID: 23454385 [TBL] [Abstract][Full Text] [Related]
20. Thermo-chemical conversion of Chlorella pyrenoidosa to liquid biofuels. Duan P; Jin B; Xu Y; Yang Y; Bai X; Wang F; Zhang L; Miao J Bioresour Technol; 2013 Apr; 133():197-205. PubMed ID: 23425587 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]