These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
470 related articles for article (PubMed ID: 25770472)
21. Enrichment of bio-oil after hydrothermal liquefaction (HTL) of microalgae C. vulgaris grown in wastewater: Bio-char and post HTL wastewater utilization studies. Arun J; Varshini P; Prithvinath PK; Priyadarshini V; Gopinath KP Bioresour Technol; 2018 Aug; 261():182-187. PubMed ID: 29660659 [TBL] [Abstract][Full Text] [Related]
22. Understanding low-lipid algae hydrothermal liquefaction characteristics and pathways through hydrothermal liquefaction of algal major components: crude polysaccharides, crude proteins and their binary mixtures. Yang W; Li X; Li Z; Tong C; Feng L Bioresour Technol; 2015 Nov; 196():99-108. PubMed ID: 26231129 [TBL] [Abstract][Full Text] [Related]
23. Co-liquefaction of micro- and macroalgae in subcritical water. Jin B; Duan P; Xu Y; Wang F; Fan Y Bioresour Technol; 2013 Dec; 149():103-10. PubMed ID: 24096026 [TBL] [Abstract][Full Text] [Related]
24. Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil. Chen WT; Zhang Y; Zhang J; Yu G; Schideman LC; Zhang P; Minarick M Bioresour Technol; 2014; 152():130-9. PubMed ID: 24287452 [TBL] [Abstract][Full Text] [Related]
25. Co-liquefaction of mixed culture microalgal strains under sub-critical water conditions. Dandamudi KPR; Muppaneni T; Sudasinghe N; Schaub T; Holguin FO; Lammers PJ; Deng S Bioresour Technol; 2017 Jul; 236():129-137. PubMed ID: 28399416 [TBL] [Abstract][Full Text] [Related]
26. Study on hydrothermal liquefaction of antibiotic residues for bio-oil in ethanol-water system. Yang J; Hong C; Li Z; Xing Y; Zhao X Waste Manag; 2021 Feb; 120():164-174. PubMed ID: 33307361 [TBL] [Abstract][Full Text] [Related]
27. Roles of Co-solvents in hydrothermal liquefaction of low-lipid, high-protein algae. Cui Z; Cheng F; Jarvis JM; Brewer CE; Jena U Bioresour Technol; 2020 Aug; 310():123454. PubMed ID: 32388353 [TBL] [Abstract][Full Text] [Related]
28. Investigation of aqueous phase recycling for improving bio-crude oil yield in hydrothermal liquefaction of algae. Hu Y; Feng S; Yuan Z; Xu CC; Bassi A Bioresour Technol; 2017 Sep; 239():151-159. PubMed ID: 28521224 [TBL] [Abstract][Full Text] [Related]
29. Catalytic pyrolysis and liquefaction behavior of microalgae for bio-oil production. Xu Y; Hu Y; Peng Y; Yao L; Dong Y; Yang B; Song R Bioresour Technol; 2020 Mar; 300():122665. PubMed ID: 31918303 [TBL] [Abstract][Full Text] [Related]
30. Studies on influence of process parameters on hydrothermal catalytic liquefaction of microalgae (Chlorella vulgaris) biomass grown in wastewater. Arun J; Shreekanth SJ; Sahana R; Raghavi MS; Gopinath KP; Gnanaprakash D Bioresour Technol; 2017 Nov; 244(Pt 1):963-968. PubMed ID: 28847087 [TBL] [Abstract][Full Text] [Related]
31. Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria. Wagner J; Bransgrove R; Beacham TA; Allen MJ; Meixner K; Drosg B; Ting VP; Chuck CJ Bioresour Technol; 2016 May; 207():166-74. PubMed ID: 26881334 [TBL] [Abstract][Full Text] [Related]
32. Hydrothermal liquefaction of Nannochloropsis oceanica in different solvents. Caporgno MP; Pruvost J; Legrand J; Lepine O; Tazerout M; Bengoa C Bioresour Technol; 2016 Aug; 214():404-410. PubMed ID: 27155795 [TBL] [Abstract][Full Text] [Related]
33. Hydrothermal liquefaction of high- and low-lipid algae: Mass and energy balances. Cheng F; Cui Z; Mallick K; Nirmalakhandan N; Brewer CE Bioresour Technol; 2018 Jun; 258():158-167. PubMed ID: 29525590 [TBL] [Abstract][Full Text] [Related]
34. Hydrothermal liquefaction of biomass: developments from batch to continuous process. Elliott DC; Biller P; Ross AB; Schmidt AJ; Jones SB Bioresour Technol; 2015 Feb; 178():147-156. PubMed ID: 25451780 [TBL] [Abstract][Full Text] [Related]
35. Effect of glycerol as co-solvent on yields of bio-oil from rice straw through hydrothermal liquefaction. Cao L; Zhang C; Hao S; Luo G; Zhang S; Chen J Bioresour Technol; 2016 Nov; 220():471-478. PubMed ID: 27611031 [TBL] [Abstract][Full Text] [Related]
36. Influence of strain-specific parameters on hydrothermal liquefaction of microalgae. López Barreiro D; Zamalloa C; Boon N; Vyverman W; Ronsse F; Brilman W; Prins W Bioresour Technol; 2013 Oct; 146():463-471. PubMed ID: 23958678 [TBL] [Abstract][Full Text] [Related]
37. Comprehensive characterization of hydrothermal liquefaction products obtained from woody biomass under various alkali catalyst concentrations. Hwang H; Lee JH; Choi IG; Choi JW Environ Technol; 2019 May; 40(13):1657-1667. PubMed ID: 29333927 [TBL] [Abstract][Full Text] [Related]
38. Thermolysis of microalgae and duckweed in a CO₂-swept fixed-bed reactor: bio-oil yield and compositional effects. Campanella A; Muncrief R; Harold MP; Griffith DC; Whitton NM; Weber RS Bioresour Technol; 2012 Apr; 109():154-62. PubMed ID: 22285294 [TBL] [Abstract][Full Text] [Related]
39. A hydrothermal co-liquefaction of spirulina platensis with rice husk, coconut shell and HDPE for biocrude production. Saral JS; Ranganathan P Bioresour Technol; 2022 Nov; 363():127911. PubMed ID: 36089126 [TBL] [Abstract][Full Text] [Related]
40. Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect. Chen W; Chen Y; Yang H; Xia M; Li K; Chen X; Chen H Bioresour Technol; 2017 Dec; 245(Pt A):860-868. PubMed ID: 28926919 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]