BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 25770473)

  • 1. A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes.
    Díaz I; Pérez C; Alfaro N; Fdz-Polanco F
    Bioresour Technol; 2015 Jun; 185():246-53. PubMed ID: 25770473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of process performance, energy consumption and microbiota characterization in a ceramic membrane bioreactor for ex-situ biomethanation of H
    Alfaro N; Fdz-Polanco M; Fdz-Polanco F; Díaz I
    Bioresour Technol; 2018 Jun; 258():142-150. PubMed ID: 29525588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens.
    Zabranska J; Pokorna D
    Biotechnol Adv; 2018; 36(3):707-720. PubMed ID: 29248685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas.
    Patel SK; Mardina P; Kim D; Kim SY; Kalia VC; Kim IW; Lee JK
    Bioresour Technol; 2016 Oct; 218():202-8. PubMed ID: 27371792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological hydrogen methanation systems - an overview of design and efficiency.
    Rusmanis D; O'Shea R; Wall DM; Murphy JD
    Bioengineered; 2019 Dec; 10(1):604-634. PubMed ID: 31679461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-situ biogas upgrading in thermophilic granular UASB reactor: key factors affecting the hydrogen mass transfer rate.
    Bassani I; Kougias PG; Angelidaki I
    Bioresour Technol; 2016 Dec; 221():485-491. PubMed ID: 27677151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ Biogas Upgrading by CO
    Fu S; Angelidaki I; Zhang Y
    Trends Biotechnol; 2021 Apr; 39(4):336-347. PubMed ID: 32917407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hollow fiber membrane based H₂ diffusion for efficient in situ biogas upgrading in an anaerobic reactor.
    Luo G; Angelidaki I
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3739-44. PubMed ID: 23494624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exogenous addition of H
    Mulat DG; Mosbæk F; Ward AJ; Polag D; Greule M; Keppler F; Nielsen JL; Feilberg A
    Waste Manag; 2017 Oct; 68():146-156. PubMed ID: 28623019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogas Upgrading via Hydrogenotrophic Methanogenesis in Two-Stage Continuous Stirred Tank Reactors at Mesophilic and Thermophilic Conditions.
    Bassani I; Kougias PG; Treu L; Angelidaki I
    Environ Sci Technol; 2015 Oct; 49(20):12585-93. PubMed ID: 26390125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic biogas upgrading based on the Sabatier process: thermodynamic and dynamic process simulation.
    Jürgensen L; Ehimen EA; Born J; Holm-Nielsen JB
    Bioresour Technol; 2015 Feb; 178():323-329. PubMed ID: 25453430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological upgrading of biogas assisted with membrane supplied hydrogen gas in a three-phase upflow reactor.
    Rao Y; Lin TY; Ling F; He Z
    Bioresour Technol; 2024 Feb; 394():130260. PubMed ID: 38151211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the loss of methane through secondary gas mass transport (or 'slip') from a micro-porous membrane contactor applied to biogas upgrading.
    McLeod A; Jefferson B; McAdam EJ
    Water Res; 2013 Jul; 47(11):3688-95. PubMed ID: 23726705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of hydrogen dispersion in thermophilic up-flow reactors for ex situ biogas upgrading.
    Bassani I; Kougias PG; Treu L; Porté H; Campanaro S; Angelidaki I
    Bioresour Technol; 2017 Jun; 234():310-319. PubMed ID: 28340435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An overview of microbial biogas enrichment.
    Aryal N; Kvist T; Ammam F; Pant D; Ottosen LDM
    Bioresour Technol; 2018 Sep; 264():359-369. PubMed ID: 29908874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. H
    Alfaro N; Fdz-Polanco M; Fdz-Polanco F; Díaz I
    Bioresour Technol; 2019 May; 280():1-8. PubMed ID: 30743054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature and Inoculum Origin Influence the Performance of Ex-Situ Biological Hydrogen Methanation.
    Figeac N; Trably E; Bernet N; Delgenès JP; Escudié R
    Molecules; 2020 Dec; 25(23):. PubMed ID: 33271799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance Biogas Upgrading Using a Biotrickling Filter and Hydrogenotrophic Methanogens.
    Dupnock TL; Deshusses MA
    Appl Biochem Biotechnol; 2017 Oct; 183(2):488-502. PubMed ID: 28808937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen-driven microbial biogas upgrading: Advances, challenges and solutions.
    Lai CY; Zhou L; Yuan Z; Guo J
    Water Res; 2021 Jun; 197():117120. PubMed ID: 33862393
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct inoculation of a biotrickling filter for hydrogenotrophic methanogenesis.
    Dahl Jønson B; Ujarak Sieborg M; Tahir Ashraf M; Yde L; Shin J; Shin SG; Mi Triolo J
    Bioresour Technol; 2020 Dec; 318():124098. PubMed ID: 32947139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.