These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 25770502)

  • 1. Redox-active on-surface polymerization of single-site divalent cations from pure metals by a ketone-functionalized phenanthroline.
    Skomski D; Tempas CD; Bukowski GS; Smith KA; Tait SL
    J Chem Phys; 2015 Mar; 142(10):101913. PubMed ID: 25770502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox-active on-surface assembly of metal-organic chains with single-site Pt(II).
    Skomski D; Tempas CD; Smith KA; Tait SL
    J Am Chem Soc; 2014 Jul; 136(28):9862-5. PubMed ID: 24960669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two- and Three-Electron Oxidation of Single-Site Vanadium Centers at Surfaces by Ligand Design.
    Skomski D; Tempas CD; Cook BJ; Polezhaev AV; Smith KA; Caulton KG; Tait SL
    J Am Chem Soc; 2015 Jun; 137(24):7898-902. PubMed ID: 26029790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-associated water and secondary structure effect removal of blood proteins from metallic substrates.
    Anand G; Zhang F; Linhardt RJ; Belfort G
    Langmuir; 2011 Mar; 27(5):1830-6. PubMed ID: 21182242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids.
    Zhang H; Cui H
    Langmuir; 2009 Mar; 25(5):2604-12. PubMed ID: 19437685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-electron Reduction Capacity and Multiple Binding Pockets in Metal-Organic Redox Assembly at Surfaces.
    Morris TW; Huerfano IJ; Wang M; Wisman DL; Cabelof AC; Din NU; Tempas CD; Le D; Polezhaev AV; Rahman TS; Caulton KG; Tait SL
    Chemistry; 2019 Apr; 25(21):5565-5573. PubMed ID: 30746807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox-active ligand controlled selectivity of vanadium oxidation on Au(100).
    Tempas CD; Morris TW; Wisman DL; Le D; Din NU; Williams CG; Wang M; Polezhaev AV; Rahman TS; Caulton KG; Tait SL
    Chem Sci; 2018 Feb; 9(6):1674-1685. PubMed ID: 29675215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ spectroscopy of complex surface reactions on supported Pd-Zn, Pd-Ga, and Pd(Pt)-Cu nanoparticles.
    Föttinger K; Rupprechter G
    Acc Chem Res; 2014 Oct; 47(10):3071-9. PubMed ID: 25247260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymeric heterogeneous catalysts of transition-metal oxides: surface characterization, physicomechanical properties, and catalytic activity.
    Nhi BD; Akhmadullin RM; Akhmadullina AG; Samuilov YD; Aghajanian SI
    Chemphyschem; 2013 Dec; 14(18):4149-57. PubMed ID: 24243767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for CO oxidation.
    Mu R; Fu Q; Xu H; Zhang H; Huang Y; Jiang Z; Zhang S; Tan D; Bao X
    J Am Chem Soc; 2011 Feb; 133(6):1978-86. PubMed ID: 21247156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen chemisorption on supported platinum, gold, and platinum-gold-alloy catalysts.
    Bus E; van Bokhoven JA
    Phys Chem Chem Phys; 2007 Jun; 9(22):2894-902. PubMed ID: 17538735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible structural transformation of FeO(x) nanostructures on Pt under cycling redox conditions and its effect on oxidation catalysis.
    Fu Q; Yao Y; Guo X; Wei M; Ning Y; Liu H; Yang F; Liu Z; Bao X
    Phys Chem Chem Phys; 2013 Sep; 15(35):14708-14. PubMed ID: 23900259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pt based nanocomposites (mono/bi/tri-metallic) decorated using different carbon supports for methanol electro-oxidation in acidic and basic media.
    Singh B; Murad L; Laffir F; Dickinson C; Dempsey E
    Nanoscale; 2011 Aug; 3(8):3334-49. PubMed ID: 21717025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism.
    Burch R
    Phys Chem Chem Phys; 2006 Dec; 8(47):5483-500. PubMed ID: 17136264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface characteristics and protein adsorption on combinatorial binary Ti-M (Cr, Al, Ni) and Al-M (Ta, Zr) library films.
    Bai Z; Filiaggi MJ; Sanderson RJ; Lohstreter LB; McArthur MA; Dahn JR
    J Biomed Mater Res A; 2010 Feb; 92(2):521-32. PubMed ID: 19235218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monolayer binary active phase (Mo-V) and (Cr-V) supported on titania catalysts for the selective catalytic reduction (SCR) of NO by NH3.
    Bourikas K; Fountzoula C; Kordulis C
    Langmuir; 2004 Nov; 20(24):10663-9. PubMed ID: 15544399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular studies of model surfaces of metals from single crystals to nanoparticles under catalytic reaction conditions. Evolution from prenatal and postmortem studies of catalysts.
    Somorjai GA; Aliaga C
    Langmuir; 2010 Nov; 26(21):16190-203. PubMed ID: 20860409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.