BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25770654)

  • 1. Sorption and degradation of triclosan in sediments and its effect on microbes.
    Huang X; Wu C; Hu H; Yu Y; Liu J
    Ecotoxicol Environ Saf; 2015 Jun; 116():76-83. PubMed ID: 25770654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sorption/desorption behavior of triclosan in sediment-water-rhamnolipid systems: Effects of pH, ionic strength, and DOM.
    Wu W; Hu Y; Guo Q; Yan J; Chen Y; Cheng J
    J Hazard Mater; 2015 Oct; 297():59-65. PubMed ID: 25938643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of sediment bacterial community to triclosan in subtropical freshwater benthic microcosms.
    Peng FJ; Diepens NJ; Pan CG; Ying GG; Salvito D; Selck H; Van den Brink PJ
    Environ Pollut; 2019 May; 248():676-683. PubMed ID: 30849585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resilience and recovery: the effect of triclosan exposure timing during development, on the structure and function of river biofilm communities.
    Lawrence JR; Topp E; Waiser MJ; Tumber V; Roy J; Swerhone GD; Leavitt P; Paule A; Korber DR
    Aquat Toxicol; 2015 Apr; 161():253-66. PubMed ID: 25731684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of monorhamnolipid and dirhamnolipid on sorption and desorption of triclosan in sediment-water system.
    Zhang X; Guo Q; Hu Y; Lin H
    Chemosphere; 2013 Jan; 90(2):581-7. PubMed ID: 23044351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhamnolipid-enhanced aerobic biodegradation of triclosan (TCS) by indigenous microorganisms in water-sediment systems.
    Guo Q; Yan J; Wen J; Hu Y; Chen Y; Wu W
    Sci Total Environ; 2016 Nov; 571():1304-11. PubMed ID: 27476727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate and effects of sediment-associated triclosan in subtropical freshwater microcosms.
    Peng FJ; Diepens NJ; Pan CG; Bracewell SA; Ying GG; Salvito D; Selck H; Van den Brink PJ
    Aquat Toxicol; 2018 Sep; 202():117-125. PubMed ID: 30025380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insight into the enhancement effect of humic acid on microbial degradation of triclosan in anaerobic sediments.
    Chen J; Zhang B; Wang C; Wang P; Cui G; Gao H; Feng B; Zhang J
    J Hazard Mater; 2024 Jan; 461():132549. PubMed ID: 37717441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Microbial biomass and its correlations with carbon, nitrogen, and phosphorus in the sediments of Taihu Lake].
    Wang N; Xu DL; Guo X; Wu XQ; An SQ
    Ying Yong Sheng Tai Xue Bao; 2012 Jul; 23(7):1921-6. PubMed ID: 23173468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative microscale analysis of the effects of triclosan and triclocarban on the structure and function of river biofilm communities.
    Lawrence JR; Zhu B; Swerhone GD; Roy J; Wassenaar LI; Topp E; Korber DR
    Sci Total Environ; 2009 May; 407(10):3307-16. PubMed ID: 19275956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption of triclosan onto sediments and its distribution behavior in sediment-water-rhamnolipid systems.
    Lin H; Hu YY; Zhang XY; Guo YP; Chen GR
    Environ Toxicol Chem; 2011 Nov; 30(11):2416-22. PubMed ID: 21823162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fate and effects of triclosan in subtropical river biofilms.
    Zhang N; Peng F; Ying GG; Van den Brink PJ
    Aquat Toxicol; 2019 Jul; 212():11-19. PubMed ID: 31026709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triclosan: its occurrence, fate and effects in the Australian environment.
    Kookana RS; Ying GG; Waller NJ
    Water Sci Technol; 2011; 63(4):598-604. PubMed ID: 21330702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anoxic biodegradation of triclosan and the removal of its antimicrobial effect in microbial fuel cells.
    Wang L; Liu Y; Wang C; Zhao X; Mahadeva GD; Wu Y; Ma J; Zhao F
    J Hazard Mater; 2018 Feb; 344():669-678. PubMed ID: 29154092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation into the effects of silver nanoparticles on natural microbial communities in two freshwater sediments.
    Bao S; Wang H; Zhang W; Xie Z; Fang T
    Environ Pollut; 2016 Dec; 219():696-704. PubMed ID: 27396616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial community variation and microbial mechanism of triclosan (TCS) removal by constructed wetlands with different types of plants.
    Zhao C; Xie H; Xu J; Xu X; Zhang J; Hu Z; Liu C; Liang S; Wang Q; Wang J
    Sci Total Environ; 2015 Feb; 505():633-9. PubMed ID: 25461066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes.
    Cho HH; Huang H; Schwab K
    Langmuir; 2011 Nov; 27(21):12960-7. PubMed ID: 21913654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retention-release characteristics of triclocarban and triclosan in biosolids, soils, and biosolids-amended soils.
    Agyin-Birikorang S; Miller M; O'Connor GA
    Environ Toxicol Chem; 2010 Sep; 29(9):1925-33. PubMed ID: 20821649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology.
    Dong H; Zhang G; Jiang H; Yu B; Chapman LR; Lucas CR; Fields MW
    Microb Ecol; 2006 Jan; 51(1):65-82. PubMed ID: 16400537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triclosan exposure increases triclosan resistance and influences taxonomic composition of benthic bacterial communities.
    Drury B; Scott J; Rosi-Marshall EJ; Kelly JJ
    Environ Sci Technol; 2013 Aug; 47(15):8923-30. PubMed ID: 23865377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.