These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 25771055)
1. Effect of reference population size and available ancestor genotypes on imputation of Mexican Holstein genotypes. García-Ruiz A; Ruiz-Lopez FJ; Wiggans GR; Van Tassell CP; Montaldo HH J Dairy Sci; 2015 May; 98(5):3478-84. PubMed ID: 25771055 [TBL] [Abstract][Full Text] [Related]
2. Reliability of genomic prediction for German Holsteins using imputed genotypes from low-density chips. Segelke D; Chen J; Liu Z; Reinhardt F; Thaller G; Reents R J Dairy Sci; 2012 Sep; 95(9):5403-5411. PubMed ID: 22916947 [TBL] [Abstract][Full Text] [Related]
3. Imputation of ungenotyped parental genotypes in dairy and beef cattle from progeny genotypes. Berry DP; McParland S; Kearney JF; Sargolzaei M; Mullen MP Animal; 2014 Jun; 8(6):895-903. PubMed ID: 24840560 [TBL] [Abstract][Full Text] [Related]
4. Imputation of missing genotypes from low- to high-density SNP panel in different population designs. He S; Wang S; Fu W; Ding X; Zhang Q Anim Genet; 2015 Feb; 46(1):1-7. PubMed ID: 25431355 [TBL] [Abstract][Full Text] [Related]
5. Imputation accuracy from low- to medium-density SNP chips for US crossbred dairy cattle. Déru V; Tiezzi F; VanRaden PM; Lozada-Soto EA; Toghiani S; Maltecca C J Dairy Sci; 2024 Jan; 107(1):398-411. PubMed ID: 37641298 [TBL] [Abstract][Full Text] [Related]
6. Increasing imputation and prediction accuracy for Chinese Holsteins using joint Chinese-Nordic reference population. Ma P; Lund MS; Ding X; Zhang Q; Su G J Anim Breed Genet; 2014 Dec; 131(6):462-72. PubMed ID: 25099946 [TBL] [Abstract][Full Text] [Related]
7. Strategies and utility of imputed SNP genotypes for genomic analysis in dairy cattle. Khatkar MS; Moser G; Hayes BJ; Raadsma HW BMC Genomics; 2012 Oct; 13():538. PubMed ID: 23043356 [TBL] [Abstract][Full Text] [Related]
8. Imputation of genotypes from low density (50,000 markers) to high density (700,000 markers) of cows from research herds in Europe, North America, and Australasia using 2 reference populations. Pryce JE; Johnston J; Hayes BJ; Sahana G; Weigel KA; McParland S; Spurlock D; Krattenmacher N; Spelman RJ; Wall E; Calus MP J Dairy Sci; 2014 Mar; 97(3):1799-811. PubMed ID: 24472132 [TBL] [Abstract][Full Text] [Related]
9. Marker selection and genomic prediction of economically important traits using imputed high-density genotypes for 5 breeds of dairy cattle. Al-Khudhair A; VanRaden PM; Null DJ; Li B J Dairy Sci; 2021 Apr; 104(4):4478-4485. PubMed ID: 33612229 [TBL] [Abstract][Full Text] [Related]
10. Imputation of missing single nucleotide polymorphism genotypes using a multivariate mixed model framework. Calus MP; Veerkamp RF; Mulder HA J Anim Sci; 2011 Jul; 89(7):2042-9. PubMed ID: 21357451 [TBL] [Abstract][Full Text] [Related]
11. Practical implementation of cost-effective genomic selection in commercial pig breeding using imputation. Cleveland MA; Hickey JM J Anim Sci; 2013 Aug; 91(8):3583-92. PubMed ID: 23736050 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of developed low-density genotype panels for imputation to higher density in independent dairy and beef cattle populations. Judge MM; Kearney JF; McClure MC; Sleator RD; Berry DP J Anim Sci; 2016 Mar; 94(3):949-62. PubMed ID: 27065257 [TBL] [Abstract][Full Text] [Related]
14. Strategies for single nucleotide polymorphism (SNP) genotyping to enhance genotype imputation in Gyr (Bos indicus) dairy cattle: Comparison of commercially available SNP chips. Boison SA; Santos DJ; Utsunomiya AH; Carvalheiro R; Neves HH; O'Brien AM; Garcia JF; Sölkner J; da Silva MV J Dairy Sci; 2015 Jul; 98(7):4969-89. PubMed ID: 25958293 [TBL] [Abstract][Full Text] [Related]
15. Accuracy of high-density genotype imputation in Japanese Black cattle. Uemoto Y; Sasaki S; Sugimoto Y; Watanabe T Anim Genet; 2015 Aug; 46(4):388-94. PubMed ID: 26156250 [TBL] [Abstract][Full Text] [Related]
16. Imputation of genotypes with low-density chips and its effect on reliability of direct genomic values in Dutch Holstein cattle. Mulder HA; Calus MP; Druet T; Schrooten C J Dairy Sci; 2012 Feb; 95(2):876-89. PubMed ID: 22281352 [TBL] [Abstract][Full Text] [Related]
17. Error rate for imputation from the Illumina BovineSNP50 chip to the Illumina BovineHD chip. Schrooten C; Dassonneville R; Ducrocq V; Brøndum RF; Lund MS; Chen J; Liu Z; González-Recio O; Pena J; Druet T Genet Sel Evol; 2014 Feb; 46(1):10. PubMed ID: 24495554 [TBL] [Abstract][Full Text] [Related]
18. Imputation of high-density genotypes in the Fleckvieh cattle population. Pausch H; Aigner B; Emmerling R; Edel C; Götz KU; Fries R Genet Sel Evol; 2013 Feb; 45(1):3. PubMed ID: 23406470 [TBL] [Abstract][Full Text] [Related]
19. High-density marker imputation accuracy in sixteen French cattle breeds. Hozé C; Fouilloux MN; Venot E; Guillaume F; Dassonneville R; Fritz S; Ducrocq V; Phocas F; Boichard D; Croiseau P Genet Sel Evol; 2013 Sep; 45(1):33. PubMed ID: 24004563 [TBL] [Abstract][Full Text] [Related]
20. [Impacts of SNP genotyping call rate and SNP genotyping error rate on imputation accuracy inHolsteincattle]. Li Z; He J; Jiang J; G Tait R; Bauck S; Guo W; Wu XL Yi Chuan; 2019 Jul; 41(7):644-652. PubMed ID: 31307973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]