BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

817 related articles for article (PubMed ID: 25771198)

  • 1. Why Selection Might Be Stronger When Populations Are Small: Intron Size and Density Predict within and between-Species Usage of Exonic Splice Associated cis-Motifs.
    Wu X; Hurst LD
    Mol Biol Evol; 2015 Jul; 32(7):1847-61. PubMed ID: 25771198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns.
    Dewey CN; Rogozin IB; Koonin EV
    BMC Genomics; 2006 Dec; 7():311. PubMed ID: 17156453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determinants of the Usage of Splice-Associated cis-Motifs Predict the Distribution of Human Pathogenic SNPs.
    Wu X; Hurst LD
    Mol Biol Evol; 2016 Feb; 33(2):518-29. PubMed ID: 26545919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for deep phylogenetic conservation of exonic splice-related constraints: splice-related skews at exonic ends in the brown alga Ectocarpus are common and resemble those seen in humans.
    Wu X; Tronholm A; Cáceres EF; Tovar-Corona JM; Chen L; Urrutia AO; Hurst LD
    Genome Biol Evol; 2013; 5(9):1731-45. PubMed ID: 23902749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purifying Selection on Exonic Splice Enhancers in Intronless Genes.
    Savisaar R; Hurst LD
    Mol Biol Evol; 2016 Jun; 33(6):1396-418. PubMed ID: 26802218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exonic splicing regulatory elements skew synonymous codon usage near intron-exon boundaries in mammals.
    Parmley JL; Hurst LD
    Mol Biol Evol; 2007 Aug; 24(8):1600-3. PubMed ID: 17525472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for purifying selection against synonymous mutations in mammalian exonic splicing enhancers.
    Parmley JL; Chamary JV; Hurst LD
    Mol Biol Evol; 2006 Feb; 23(2):301-9. PubMed ID: 16221894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for a trade-off between translational efficiency and splicing regulation in determining synonymous codon usage in Drosophila melanogaster.
    Warnecke T; Hurst LD
    Mol Biol Evol; 2007 Dec; 24(12):2755-62. PubMed ID: 17905999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational analysis of splicing errors and mutations in human transcripts.
    Kurmangaliyev YZ; Gelfand MS
    BMC Genomics; 2008 Jan; 9():13. PubMed ID: 18194514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The strength of the HIV-1 3' splice sites affects Rev function.
    Kammler S; Otte M; Hauber I; Kjems J; Hauber J; Schaal H
    Retrovirology; 2006 Dec; 3():89. PubMed ID: 17144911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational bias and the protein code shape the evolution of splicing enhancers.
    Rong S; Buerer L; Rhine CL; Wang J; Cygan KJ; Fairbrother WG
    Nat Commun; 2020 Jun; 11(1):2845. PubMed ID: 32504065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biased codon usage near intron-exon junctions: selection on splicing enhancers, splice-site recognition or something else?
    Chamary JV; Hurst LD
    Trends Genet; 2005 May; 21(5):256-9. PubMed ID: 15851058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution, impact and properties of exonic splice enhancers.
    Cáceres EF; Hurst LD
    Genome Biol; 2013 Dec; 14(12):R143. PubMed ID: 24359918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of exonic splicing regulation on synonymous codon usage in alternatively spliced exons of Dscam.
    Takahashi A
    BMC Evol Biol; 2009 Aug; 9():214. PubMed ID: 19709440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of exonic splicing enhancer elements in human genes.
    Wu Y; Zhang Y; Zhang J
    Genomics; 2005 Sep; 86(3):329-36. PubMed ID: 16005179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition.
    Královicová J; Vorechovsky I
    Nucleic Acids Res; 2007; 35(19):6399-413. PubMed ID: 17881373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finding exonic islands in a sea of non-coding sequence: splicing related constraints on protein composition and evolution are common in intron-rich genomes.
    Warnecke T; Parmley JL; Hurst LD
    Genome Biol; 2008; 9(2):R29. PubMed ID: 18257921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiated evolutionary rates in alternative exons and the implications for splicing regulation.
    Plass M; Eyras E
    BMC Evol Biol; 2006 Jun; 6():50. PubMed ID: 16792801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purifying selection on splice-related motifs, not expression level nor RNA folding, explains nearly all constraint on human lincRNAs.
    Schüler A; Ghanbarian AT; Hurst LD
    Mol Biol Evol; 2014 Dec; 31(12):3164-83. PubMed ID: 25158797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural disruption of exonic stem-loops immediately upstream of the intron regulates mammalian splicing.
    Saha K; England W; Fernandez MM; Biswas T; Spitale RC; Ghosh G
    Nucleic Acids Res; 2020 Jun; 48(11):6294-6309. PubMed ID: 32402057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.