These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25771256)

  • 1. Experimental study on multi-step creep properties of rat skins.
    Chen G; Cui S; You L; Li Y; Mei YH; Chen X
    J Mech Behav Biomed Mater; 2015 Jun; 46():49-58. PubMed ID: 25771256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament.
    Thornton GM; Oliynyk A; Frank CB; Shrive NG
    J Orthop Res; 1997 Sep; 15(5):652-6. PubMed ID: 9420592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ratchetting of porcine skin under uniaxial cyclic loading.
    Kang G; Wu X
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):498-506. PubMed ID: 21316638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creep and inverse stress relaxation behaviors of carbon nanotube yarns.
    Misak HE; Sabelkin V; Miller L; Asmatulu R; Mall S
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8331-9. PubMed ID: 24266232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet.
    Liao J; Yang L; Grashow J; Sacks MS
    J Biomech Eng; 2007 Feb; 129(1):78-87. PubMed ID: 17227101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the micromechanics of stress-relaxation and creep behaviours in the aortic valve.
    Anssari-Benam A; Screen HRC; Bucchi A
    J Mech Behav Biomed Mater; 2019 May; 93():230-245. PubMed ID: 30844614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling of loading, stress relaxation and stress recovery in a shape memory polymer.
    Sweeney J; Bonner M; Ward IM
    J Mech Behav Biomed Mater; 2014 Sep; 37():12-23. PubMed ID: 24878964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tensile creep characteristics of dental amalgam. I. Stress dependence.
    Cruickshanks-Boyd DW; Roswati N
    J Biomed Mater Res; 1981 Sep; 15(5):769-80. PubMed ID: 12659141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic time-dependant behaviour of the aortic valve.
    Anssari-Benam A; Bader DL; Screen HR
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1603-10. PubMed ID: 22098862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid pressure driven fibril reinforcement in creep and relaxation tests of articular cartilage.
    Li LP; Korhonen RK; Iivarinen J; Jurvelin JS; Herzog W
    Med Eng Phys; 2008 Mar; 30(2):182-9. PubMed ID: 17524700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time dependent properties of bovine meniscal attachments: stress relaxation and creep.
    Maes JA; Haut Donahue TL
    J Biomech; 2006; 39(16):3055-61. PubMed ID: 16360161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Healing ligaments have shorter lifetime and greater strain rate during fatigue than creep at functional stresses.
    Thornton GM; Bailey SJ
    J Biomech Eng; 2013 Sep; 135(9):91004. PubMed ID: 23775365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo static creep loading of the rat forelimb reduces ulnar structural properties at time-zero and induces damage-dependent woven bone formation.
    Lynch JA; Silva MJ
    Bone; 2008 May; 42(5):942-9. PubMed ID: 18295561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical response of bovine temporomandibular joint disc to prolonged tensile stress.
    Tanaka E; Aoyama J; Tanaka M; Watanabe M; Hattori Y; Hanaoka K; Tanne K
    Arch Oral Biol; 2002 May; 47(5):413-6. PubMed ID: 12015223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fatigue is more damaging than creep in ligament revealed by modulus reduction and residual strength.
    Thornton GM; Schwab TD; Oxland TR
    Ann Biomed Eng; 2007 Oct; 35(10):1713-21. PubMed ID: 17629791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tendons exhibit greater resistance to tissue and molecular-level damage with increasing strain rate during cyclic fatigue.
    Zitnay JL; Lin AH; Weiss JA
    Acta Biomater; 2021 Oct; 134():435-442. PubMed ID: 34314889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of creep in non-homogenous samples of human cortical bone.
    Ertas AH; Winwood K; Zioupos P; Cotton JR
    Comput Methods Biomech Biomed Engin; 2012; 15(10):1121-8. PubMed ID: 21574078
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Depth and rate dependent mechanical behaviors for articular cartilage: experiments and theoretical predictions.
    Gao LL; Zhang CQ; Gao H; Liu ZD; Xiao PP
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():244-51. PubMed ID: 24656375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity of the human tendon to short- and long-term mechanical loading.
    Arampatzis A; Karamanidis K; Mademli L; Albracht K
    Exerc Sport Sci Rev; 2009 Apr; 37(2):66-72. PubMed ID: 19305197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of creep strain during tensile fatigue of cortical bone.
    Cotton JR; Zioupos P; Winwood K; Taylor M
    J Biomech; 2003 Jul; 36(7):943-9. PubMed ID: 12757803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.