These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25771386)

  • 1. Variants in Solute Carrier SLC26A9 Modify Prenatal Exocrine Pancreatic Damage in Cystic Fibrosis.
    Miller MR; Soave D; Li W; Gong J; Pace RG; Boëlle PY; Cutting GR; Drumm ML; Knowles MR; Sun L; Rommens JM; Accurso F; Durie PR; Corvol H; Levy H; Sontag MK; Strug LJ
    J Pediatr; 2015 May; 166(5):1152-1157.e6. PubMed ID: 25771386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for a causal relationship between early exocrine pancreatic disease and cystic fibrosis-related diabetes: a Mendelian randomization study.
    Soave D; Miller MR; Keenan K; Li W; Gong J; Ip W; Accurso F; Sun L; Rommens JM; Sontag M; Durie PR; Strug LJ
    Diabetes; 2014 Jun; 63(6):2114-9. PubMed ID: 24550193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling the complex genetic model for cystic fibrosis: pleiotropic effects of modifier genes on early cystic fibrosis-related morbidities.
    Li W; Soave D; Miller MR; Keenan K; Lin F; Gong J; Chiang T; Stephenson AL; Durie P; Rommens J; Sun L; Strug LJ
    Hum Genet; 2014 Feb; 133(2):151-61. PubMed ID: 24057835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple apical plasma membrane constituents are associated with susceptibility to meconium ileus in individuals with cystic fibrosis.
    Sun L; Rommens JM; Corvol H; Li W; Li X; Chiang TA; Lin F; Dorfman R; Busson PF; Parekh RV; Zelenika D; Blackman SM; Corey M; Doshi VK; Henderson L; Naughton KM; O'Neal WK; Pace RG; Stonebraker JR; Wood SD; Wright FA; Zielenski J; Clement A; Drumm ML; Boëlle PY; Cutting GR; Knowles MR; Durie PR; Strug LJ
    Nat Genet; 2012 May; 44(5):562-9. PubMed ID: 22466613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Association of clinical severity of cystic fibrosis with variants in the SLC gene family (SLC6A14, SLC26A9, SLC11A1 and SLC9A3).
    Pereira SV; Ribeiro JD; Bertuzzo CS; Marson FAL
    Gene; 2017 Sep; 629():117-126. PubMed ID: 28756021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-tiered immunoreactive trypsinogen-based newborn screening for cystic fibrosis in Colorado: screening efficacy and diagnostic outcomes.
    Sontag MK; Hammond KB; Zielenski J; Wagener JS; Accurso FJ
    J Pediatr; 2005 Sep; 147(3 Suppl):S83-8. PubMed ID: 16202790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving the Sensitivity and Positive Predictive Value in a Cystic Fibrosis Newborn Screening Program Using a Repeat Immunoreactive Trypsinogen and Genetic Analysis.
    Sontag MK; Lee R; Wright D; Freedenberg D; Sagel SD
    J Pediatr; 2016 Aug; 175():150-158.e1. PubMed ID: 27131402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost effectiveness of newborn screening for cystic fibrosis: a simulation study.
    Nshimyumukiza L; Bois A; Daigneault P; Lands L; Laberge AM; Fournier D; Duplantie J; Giguère Y; Gekas J; Gagné C; Rousseau F; Reinharz D
    J Cyst Fibros; 2014 May; 13(3):267-74. PubMed ID: 24238947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Newborn screening for cystic fibrosis in Wisconsin: nine-year experience with routine trypsinogen/DNA testing.
    Rock MJ; Hoffman G; Laessig RH; Kopish GJ; Litsheim TJ; Farrell PM
    J Pediatr; 2005 Sep; 147(3 Suppl):S73-7. PubMed ID: 16202788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining immunoreactive trypsinogen and pancreatitis-associated protein assays, a method of newborn screening for cystic fibrosis that avoids DNA analysis.
    Sarles J; Berthézène P; Le Louarn C; Somma C; Perini JM; Catheline M; Mirallié S; Luzet K; Roussey M; Farriaux JP; Berthelot J; Dagorn JC
    J Pediatr; 2005 Sep; 147(3):302-5. PubMed ID: 16182665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diagnosing cystic fibrosis in newborn screening in Poland - 15 years of experience.
    Sands D; Zybert K; Mierzejewska E; Ołtarzewski M
    Dev Period Med; 2015; 19(1):16-24. PubMed ID: 26003066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A survey of newborn screening for cystic fibrosis in Europe.
    Southern KW; Munck A; Pollitt R; Travert G; Zanolla L; Dankert-Roelse J; Castellani C;
    J Cyst Fibros; 2007 Jan; 6(1):57-65. PubMed ID: 16870510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and physiologic correlates of longitudinal immunoreactive trypsinogen decline in infants with cystic fibrosis identified through newborn screening.
    Sontag MK; Corey M; Hokanson JE; Marshall JA; Sommer SS; Zerbe GO; Accurso FJ
    J Pediatr; 2006 Nov; 149(5):650-657. PubMed ID: 17095337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of different IRT-PAP protocols to screen newborns for cystic fibrosis in three central European populations.
    Sommerburg O; Krulisova V; Hammermann J; Lindner M; Stahl M; Muckenthaler M; Kohlmueller D; Happich M; Kulozik AE; Votava F; Balascakova M; Skalicka V; Stopsack M; Gahr M; Macek M; Mall MA; Hoffmann GF
    J Cyst Fibros; 2014 Jan; 13(1):15-23. PubMed ID: 23891278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cystic fibrosis carriers have higher neonatal immunoreactive trypsinogen values than non-carriers.
    Castellani C; Picci L; Scarpa M; Dechecchi MC; Zanolla L; Assael BM; Zacchello F
    Am J Med Genet A; 2005 Jun; 135(2):142-4. PubMed ID: 15832355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new cystic fibrosis newborn screening algorithm: IRT/IRT1 upward arrow/DNA.
    Sontag MK; Wright D; Beebe J; Accurso FJ; Sagel SD
    J Pediatr; 2009 Nov; 155(5):618-22. PubMed ID: 19540513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunoreactive trypsinogen levels in newborn screened infants with an inconclusive diagnosis of cystic fibrosis.
    Ooi CY; Sutherland R; Castellani C; Keenan K; Boland M; Reisman J; Bjornson C; Chilvers MA; van Wylick R; Kent S; Price A; Mateos-Corral D; Hughes D; Solomon M; Zuberbuhler P; Brusky J; Durie PR; Ratjen F; Gonska T
    BMC Pediatr; 2019 Oct; 19(1):369. PubMed ID: 31640630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction among variants in the SLC gene family (SLC6A14, SLC26A9, SLC11A1, and SLC9A3) and CFTR mutations with clinical markers of cystic fibrosis.
    Pereira SVN; Ribeiro JD; Bertuzzo CS; Marson FAL
    Pediatr Pulmonol; 2018 Jul; 53(7):888-900. PubMed ID: 29635781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Newborn screening for cystic fibrosis in Wisconsin: comparison of biochemical and molecular methods.
    Gregg RG; Simantel A; Farrell PM; Koscik R; Kosorok MR; Laxova A; Laessig R; Hoffman G; Hassemer D; Mischler EH; Splaingard M
    Pediatrics; 1997 Jun; 99(6):819-24. PubMed ID: 9164776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Markedly elevated neonatal immunoreactive trypsinogen levels in the absence of cystic fibrosis gene mutations is not an indication for further testing.
    Massie J; Curnow L; Tzanakos N; Francis I; Robertson CF
    Arch Dis Child; 2006 Mar; 91(3):222-5. PubMed ID: 16243854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.