These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 25771748)

  • 1. Fabrication of elastomeric scaffolds with curvilinear fibrous structures for heart valve leaflet engineering.
    Hobson CM; Amoroso NJ; Amini R; Ungchusri E; Hong Y; D'Amore A; Sacks MS; Wagner WR
    J Biomed Mater Res A; 2015 Sep; 103(9):3101-6. PubMed ID: 25771748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable and biomimetic elastomeric scaffolds for tissue-engineered heart valves.
    Xue Y; Sant V; Phillippi J; Sant S
    Acta Biomater; 2017 Jan; 48():2-19. PubMed ID: 27780764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tri-layered elastomeric scaffolds for engineering heart valve leaflets.
    Masoumi N; Annabi N; Assmann A; Larson BL; Hjortnaes J; Alemdar N; Kharaziha M; Manning KB; Mayer JE; Khademhosseini A
    Biomaterials; 2014 Sep; 35(27):7774-85. PubMed ID: 24947233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo functional assessment of a novel degradable metal and elastomeric scaffold-based tissue engineered heart valve.
    Coyan GN; D'Amore A; Matsumura Y; Pedersen DD; Luketich SK; Shanov V; Katz WE; David TE; Wagner WR; Badhwar V
    J Thorac Cardiovasc Surg; 2019 May; 157(5):1809-1816. PubMed ID: 30578064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering.
    Wu S; Duan B; Qin X; Butcher JT
    Acta Biomater; 2017 Mar; 51():89-100. PubMed ID: 28110071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scale-dependent fiber kinematics of elastomeric electrospun scaffolds for soft tissue engineering.
    Stella JA; Wagner WR; Sacks MS
    J Biomed Mater Res A; 2010 Jun; 93(3):1032-42. PubMed ID: 19753623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructural manipulation of electrospun scaffolds for specific bending stiffness for heart valve tissue engineering.
    Amoroso NJ; D'Amore A; Hong Y; Rivera CP; Sacks MS; Wagner WR
    Acta Biomater; 2012 Dec; 8(12):4268-77. PubMed ID: 22890285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaflet Tissue Generation from Microfibrous Heart Valve Leaflet Scaffolds with Native Characteristics.
    Jana S; Morse D; Lerman A
    ACS Appl Bio Mater; 2021 Nov; 4(11):7836-7847. PubMed ID: 35006765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-scale mechanical characterization of scaffolds for heart valve tissue engineering.
    Argento G; Simonet M; Oomens CW; Baaijens FP
    J Biomech; 2012 Nov; 45(16):2893-8. PubMed ID: 22999107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy.
    Courtney T; Sacks MS; Stankus J; Guan J; Wagner WR
    Biomaterials; 2006 Jul; 27(19):3631-8. PubMed ID: 16545867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trilayered tissue structure with leaflet-like orientations developed through in vivo tissue engineering.
    Jana S; Franchi F; Lerman A
    Biomed Mater; 2019 Dec; 15(1):015004. PubMed ID: 31814596
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Jana S; Lerman A
    Regen Med; 2020 Jan; 15(1):1177-1192. PubMed ID: 32100626
    [No Abstract]   [Full Text] [Related]  

  • 13. Microstructured Nickel-Titanium Thin Film Leaflets for Hybrid Tissue Engineered Heart Valves Fabricated by Magnetron Sputter Deposition.
    Loger K; Engel A; Haupt J; Lima de Miranda R; Lutter G; Quandt E
    Cardiovasc Eng Technol; 2016 Mar; 7(1):69-77. PubMed ID: 26743538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.
    Jahnavi S; Saravanan U; Arthi N; Bhuvaneshwar GS; Kumary TV; Rajan S; Verma RS
    Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():59-71. PubMed ID: 28183649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trilayered tissue construct mimicking the orientations of three layers of a native heart valve leaflet.
    Jana S; Lerman A
    Cell Tissue Res; 2020 Nov; 382(2):321-335. PubMed ID: 32676860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and material properties of fibrous PHBV scaffolds depending on the cross-ply angle for tissue engineering.
    Kim YH; Min YK; Lee BT
    J Biomater Appl; 2012 Nov; 27(4):457-68. PubMed ID: 22071348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of a novel hybrid heart valve leaflet for tissue engineering: an in vitro study.
    Hong H; Dong N; Shi J; Chen S; Guo C; Hu P; Qi H
    Artif Organs; 2009 Jul; 33(7):554-8. PubMed ID: 19566733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue engineering of heart valves: biomechanical and morphological properties of decellularized heart valves.
    Tudorache I; Cebotari S; Sturz G; Kirsch L; Hurschler C; Hilfiker A; Haverich A; Lichtenberg A
    J Heart Valve Dis; 2007 Sep; 16(5):567-73; discussion 574. PubMed ID: 17944130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves.
    Loerakker S; Argento G; Oomens CW; Baaijens FP
    J Biomech; 2013 Jul; 46(11):1792-800. PubMed ID: 23786664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering in-plane mechanics of electrospun polyurethane scaffolds for cardiovascular tissue applications.
    Luketich SK; Cosentino F; Di Giuseppe M; Menallo G; Nasello G; Livreri P; Wagner WR; D'Amore A
    J Mech Behav Biomed Mater; 2022 Apr; 128():105126. PubMed ID: 35180648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.