These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
93 related articles for article (PubMed ID: 25771988)
1. Guanosine in a single stranded region of anticodon stem-loop tRNA models is prone to oxidatively generated damage resulting in dehydroguanidinohydantoin and spiroiminodihydantoin lesions. Tomaszewska-Antczak A; Guga P; Nawrot B; Pratviel G Chemistry; 2015 Apr; 21(17):6381-5. PubMed ID: 25771988 [TBL] [Abstract][Full Text] [Related]
2. Oxidised guanidinohydantoin (Ghox) and spiroiminodihydantoin (Sp) are major products of iron- and copper-mediated 8-oxo-7,8-dihydroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine oxidation. White B; Tarun MC; Gathergood N; Rusling JF; Smyth MR Mol Biosyst; 2005 Dec; 1(5-6):373-81. PubMed ID: 16881006 [TBL] [Abstract][Full Text] [Related]
3. Calculation of pKa values of nucleobases and the guanine oxidation products guanidinohydantoin and spiroiminodihydantoin using density functional theory and a polarizable continuum model. Verdolino V; Cammi R; Munk BH; Schlegel HB J Phys Chem B; 2008 Dec; 112(51):16860-73. PubMed ID: 19049279 [TBL] [Abstract][Full Text] [Related]
4. Reverse Transcription Past Products of Guanine Oxidation in RNA Leads to Insertion of A and C opposite 8-Oxo-7,8-dihydroguanine and A and G opposite 5-Guanidinohydantoin and Spiroiminodihydantoin Diastereomers. Alenko A; Fleming AM; Burrows CJ Biochemistry; 2017 Sep; 56(38):5053-5064. PubMed ID: 28845978 [TBL] [Abstract][Full Text] [Related]
5. Effect of the oxidized guanosine lesions spiroiminodihydantoin and guanidinohydantoin on proofreading by Escherichia coli DNA polymerase I (Klenow fragment) in different sequence contexts. Kornyushyna O; Burrows CJ Biochemistry; 2003 Nov; 42(44):13008-18. PubMed ID: 14596616 [TBL] [Abstract][Full Text] [Related]
6. Spiroiminodihydantoin and guanidinohydantoin are the dominant products of 8-oxoguanosine oxidation at low fluxes of peroxynitrite: mechanistic studies with 18O. Niles JC; Wishnok JS; Tannenbaum SR Chem Res Toxicol; 2004 Nov; 17(11):1510-9. PubMed ID: 15540949 [TBL] [Abstract][Full Text] [Related]
7. RNA polymerase II stalls on oxidative DNA damage via a torsion-latch mechanism involving lone pair-π and CH-π interactions. Oh J; Fleming AM; Xu J; Chong J; Burrows CJ; Wang D Proc Natl Acad Sci U S A; 2020 Apr; 117(17):9338-9348. PubMed ID: 32284409 [TBL] [Abstract][Full Text] [Related]
8. Hydantoin derivative formation from oxidation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) and incorporation of 14C-labeled 8-oxodG into the DNA of human breast cancer cells. Hah SS; Kim HM; Sumbad RA; Henderson PT Bioorg Med Chem Lett; 2005 Aug; 15(15):3627-31. PubMed ID: 15982874 [TBL] [Abstract][Full Text] [Related]
9. Influence of substrate complexity on the diastereoselective formation of spiroiminodihydantoin and guanidinohydantoin from chromate oxidation. Gremaud JN; Martin BD; Sugden KD Chem Res Toxicol; 2010 Feb; 23(2):379-85. PubMed ID: 20014751 [TBL] [Abstract][Full Text] [Related]
10. An exploration of mechanisms for the transformation of 8-oxoguanine to guanidinohydantoin and spiroiminodihydantoin by density functional theory. Munk BH; Burrows CJ; Schlegel HB J Am Chem Soc; 2008 Apr; 130(15):5245-56. PubMed ID: 18355018 [TBL] [Abstract][Full Text] [Related]
11. Mutagenicity of secondary oxidation products of 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-hydroxy-2'- deoxyguanosine 5'-triphosphate). Hori M; Suzuki T; Minakawa N; Matsuda A; Harashima H; Kamiya H Mutat Res; 2011 Sep; 714(1-2):11-6. PubMed ID: 21704046 [TBL] [Abstract][Full Text] [Related]
12. The Nonbulky DNA Lesions Spiroiminodihydantoin and 5-Guanidinohydantoin Significantly Block Human RNA Polymerase II Elongation in Vitro. Kolbanovskiy M; Chowdhury MA; Nadkarni A; Broyde S; Geacintov NE; Scicchitano DA; Shafirovich V Biochemistry; 2017 Jun; 56(24):3008-3018. PubMed ID: 28514164 [TBL] [Abstract][Full Text] [Related]
13. Formation of the carboxamidine precursor of cyanuric acid from guanine oxidative lesion dehydro-guanidinohydantoin. Irvoas J; Trzcionka J; Pratviel G Bioorg Med Chem; 2014 Sep; 22(17):4711-6. PubMed ID: 25092522 [TBL] [Abstract][Full Text] [Related]
14. Unusual structural features of hydantoin lesions translate into efficient recognition by Escherichia coli Fpg. Krishnamurthy N; Muller JG; Burrows CJ; David SS Biochemistry; 2007 Aug; 46(33):9355-65. PubMed ID: 17655276 [TBL] [Abstract][Full Text] [Related]
15. Formation of 13C-, 15N-, and 18O-labeled guanidinohydantoin from guanosine oxidation with singlet oxygen. Implications for structure and mechanism. Ye Y; Muller JG; Luo W; Mayne CL; Shallop AJ; Jones RA; Burrows CJ J Am Chem Soc; 2003 Nov; 125(46):13926-7. PubMed ID: 14611206 [TBL] [Abstract][Full Text] [Related]
16. The hydantoin lesions formed from oxidation of 7,8-dihydro-8-oxoguanine are potent sources of replication errors in vivo. Henderson PT; Delaney JC; Muller JG; Neeley WL; Tannenbaum SR; Burrows CJ; Essigmann JM Biochemistry; 2003 Aug; 42(31):9257-62. PubMed ID: 12899611 [TBL] [Abstract][Full Text] [Related]
17. Structural context effects in the oxidation of 8-oxo-7,8-dihydro-2'-deoxyguanosine to hydantoin products: electrostatics, base stacking, and base pairing. Fleming AM; Muller JG; Dlouhy AC; Burrows CJ J Am Chem Soc; 2012 Sep; 134(36):15091-102. PubMed ID: 22880947 [TBL] [Abstract][Full Text] [Related]
18. Mechanistic aspects of the formation of guanidinohydantoin from spiroiminodihydantoin under acidic conditions. Ye Y; Munk BH; Muller JG; Cogbill A; Burrows CJ; Schlegel HB Chem Res Toxicol; 2009 Mar; 22(3):526-35. PubMed ID: 19146379 [TBL] [Abstract][Full Text] [Related]
19. In vitro nucleotide misinsertion opposite the oxidized guanosine lesions spiroiminodihydantoin and guanidinohydantoin and DNA synthesis past the lesions using Escherichia coli DNA polymerase I (Klenow fragment). Kornyushyna O; Berges AM; Muller JG; Burrows CJ Biochemistry; 2002 Dec; 41(51):15304-14. PubMed ID: 12484769 [TBL] [Abstract][Full Text] [Related]
20. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2. Hailer MK; Slade PG; Martin BD; Rosenquist TA; Sugden KD DNA Repair (Amst); 2005 Jan; 4(1):41-50. PubMed ID: 15533836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]