These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
216 related articles for article (PubMed ID: 25772249)
1. Highly accurate scattering spectra of strongly absorbing samples obtained using an integrating sphere system by considering the angular distribution of diffusely reflected light. Fukutomi D; Ishii K; Awazu K Lasers Med Sci; 2015 May; 30(4):1335-40. PubMed ID: 25772249 [TBL] [Abstract][Full Text] [Related]
2. Influence of diffuse reflectance measurement accuracy on the scattering coefficient in determination of optical properties with integrating sphere optics (a secondary publication). Horibe T; Ishii K; Fukutomi D; Awazu K Laser Ther; 2015 Dec; 24(4):303-10. PubMed ID: 26877594 [TBL] [Abstract][Full Text] [Related]
3. Effect of light losses of sample between two integrating spheres on optical properties estimation. Zhu D; Lu W; Zeng S; Luo Q J Biomed Opt; 2007; 12(6):064004. PubMed ID: 18163820 [TBL] [Abstract][Full Text] [Related]
4. Integrating sphere port error in diffuse reflectance measurements. Sandilands LJ; Cameron T Appl Opt; 2023 Oct; 62(29):7700-7705. PubMed ID: 37855477 [TBL] [Abstract][Full Text] [Related]
5. Angular reflectance of a highly forward scattering medium at grazing incidence of light. Marinyuk VV; Remizovich VS; Sheberstov SV J Opt Soc Am A Opt Image Sci Vis; 2020 Mar; 37(3):501-510. PubMed ID: 32118935 [TBL] [Abstract][Full Text] [Related]
6. Diffuse reflectance spectroscopy characterization of hemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering. Hernández SE; Rodríguez VD; Pérez J; Martín FA; Castellano MA; Gonzalez-Mora JL J Biomed Opt; 2009; 14(3):034026. PubMed ID: 19566319 [TBL] [Abstract][Full Text] [Related]
7. Method for more accurate transmittance measurements of low-angle scattering samples using an integrating sphere with an entry port beam diffuser. Nilsson AM; Jonsson A; Jonsson JC; Roos A Appl Opt; 2011 Mar; 50(7):999-1006. PubMed ID: 21364723 [TBL] [Abstract][Full Text] [Related]
8. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue. Alhamami M; Kolios MC; Tavakkoli J Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408 [TBL] [Abstract][Full Text] [Related]
9. Visible-light photon migration through myocardium in vivo. Gandjbakhche AH; Bonner RF; Arai AE; Balaban RS Am J Physiol; 1999 Aug; 277(2):H698-704. PubMed ID: 10444496 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Cerebral Hemodynamics and Tissue Morphology of In Vivo Rat Brain Using Spectral Diffuse Reflectance Imaging. Nishidate I; Ishizuka T; Mustari A; Yoshida K; Kawauchi S; Sato S; Sato M Appl Spectrosc; 2017 May; 71(5):866-878. PubMed ID: 27381353 [TBL] [Abstract][Full Text] [Related]
11. Estimation of regional hemoglobin concentration in biological tissues using diffuse reflectance spectroscopy with a novel spectral interpretation algorithm. Chen P; Fernald B; Lin W Phys Med Biol; 2011 Jul; 56(13):3985-4000. PubMed ID: 21666291 [TBL] [Abstract][Full Text] [Related]
12. Numerical study of reflectance imaging using a parallel Monte Carlo method. Chen C; Lu JQ; Li K; Zhao S; Brock RS; Hu XH Med Phys; 2007 Jul; 34(7):2939-48. PubMed ID: 17822002 [TBL] [Abstract][Full Text] [Related]
13. Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera. Yoshida K; Nishidate I; Ishizuka T; Kawauchi S; Sato S; Sato M J Biomed Opt; 2015 May; 20(5):051026. PubMed ID: 25614979 [TBL] [Abstract][Full Text] [Related]
14. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Simpson CR; Kohl M; Essenpreis M; Cope M Phys Med Biol; 1998 Sep; 43(9):2465-78. PubMed ID: 9755939 [TBL] [Abstract][Full Text] [Related]
15. The influence of the blood vessel diameter on the full scattering profile from cylindrical tissues: experimental evidence for the shielding effect. Feder I; Duadi H; Dreifuss T; Fixler D J Biophotonics; 2016 Oct; 9(10):1001-1008. PubMed ID: 26663658 [TBL] [Abstract][Full Text] [Related]
16. Absorbance spectroscopy of light scattering samples placed inside an integrating sphere for wide dynamic range absorbance measurement. Mori A; Yamashita K; Tabata Y; Seto K; Tokunaga E Rev Sci Instrum; 2021 Dec; 92(12):123103. PubMed ID: 34972399 [TBL] [Abstract][Full Text] [Related]
17. Agarose-based Tissue Mimicking Optical Phantoms for Diffuse Reflectance Spectroscopy. Mustari A; Nishidate I; Wares MA; Maeda T; Kawauchi S; Sato S; Sato M; Aizu Y J Vis Exp; 2018 Aug; (138):. PubMed ID: 30199019 [TBL] [Abstract][Full Text] [Related]
18. [Spectral characteristics of normal breast samples in the 350-850 nm wavelength range]. Wang YH; Yang HQ; Xie SS; Ye Z; Su YM Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2751-5. PubMed ID: 20038053 [TBL] [Abstract][Full Text] [Related]
19. Estimation of scattering phase function utilizing laser Doppler power density spectra. Wojtkiewicz S; Liebert A; Rix H; Sawosz P; Maniewski R Phys Med Biol; 2013 Feb; 58(4):937-55. PubMed ID: 23340453 [TBL] [Abstract][Full Text] [Related]
20. Stray-light corrections in integrating-sphere measurements on low-scattering samples. Rönnow D; Roos A Appl Opt; 1994 Sep; 33(25):6092-7. PubMed ID: 20936026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]