These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 25772279)

  • 21. Reconstruction of critical-size mandibular defects in immunoincompetent rats with human adipose-derived stromal cells.
    Streckbein P; Jäckel S; Malik CY; Obert M; Kähling C; Wilbrand JF; Zahner D; Heidinger K; Kampschulte M; Pons-Kühnemann J; Köhler K; Sauer H; Kramer M; Howaldt HP
    J Craniomaxillofac Surg; 2013 Sep; 41(6):496-503. PubMed ID: 23684529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanical considerations of animal models used in tissue engineering of bone.
    Liebschner MA
    Biomaterials; 2004 Apr; 25(9):1697-714. PubMed ID: 14697871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scaffolds combined with stem cells and growth factors in healing of pseudotumoral lesions of bone.
    De Biase P; Campanacci DA; Beltrami G; Scoccianti G; Ciampalini L; Pecchioli O; Capanna R
    Int J Immunopathol Pharmacol; 2011; 24(1 Suppl 2):11-5. PubMed ID: 21669131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of the induced membrane technique for bone tissue engineering purposes: animal studies.
    Viateau V; Bensidhoum M; Guillemin G; Petite H; Hannouche D; Anagnostou F; Pélissier P
    Orthop Clin North Am; 2010 Jan; 41(1):49-56; table of contents. PubMed ID: 19931052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bone graft substitutes: What are the options?
    Dinopoulos H; Dimitriou R; Giannoudis PV
    Surgeon; 2012 Aug; 10(4):230-9. PubMed ID: 22682580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Critical size defect regeneration using PEG-mediated BMP-2 gene delivery and the use of cell occlusive barrier membranes - the osteopromotive principle revisited.
    Wehrhan F; Amann K; Molenberg A; Lutz R; Neukam FW; Schlegel KA
    Clin Oral Implants Res; 2013 Aug; 24(8):910-20. PubMed ID: 23865504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Osteoinduction of bone grafting materials for bone repair and regeneration.
    García-Gareta E; Coathup MJ; Blunn GW
    Bone; 2015 Dec; 81():112-121. PubMed ID: 26163110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Reconstruction of segmental bone defect by gene modified tissue engineering bone combined with vascularized periosteum].
    Li JJ; Zhao Q; Wang H; Yang J; Yuan Q; Cui SQ; Li L
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2007 Nov; 23(6):502-6. PubMed ID: 18269027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Emerging regenerative approaches for periodontal reconstruction: a systematic review from the AAP Regeneration Workshop.
    Lin Z; Rios HF; Cochran DL
    J Periodontol; 2015 Feb; 86(2 Suppl):S134-52. PubMed ID: 25644297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering.
    Brydone AS; Meek D; Maclaine S
    Proc Inst Mech Eng H; 2010 Dec; 224(12):1329-43. PubMed ID: 21287823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Macroporous scaffolds associated with cells to construct a hybrid biomaterial for bone tissue engineering.
    Rosa AL; de Oliveira PT; Beloti MM
    Expert Rev Med Devices; 2008 Nov; 5(6):719-28. PubMed ID: 19025348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of cultivated osteoprogenitor cells to increase bone formation in segmental mandibular defects: an experimental pilot study in sheep.
    Schliephake H; Knebel JW; Aufderheide M; Tauscher M
    Int J Oral Maxillofac Surg; 2001 Dec; 30(6):531-7. PubMed ID: 11829236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scaffold modeling application in the repair of skull defects.
    Wan W; Shi P
    Artif Organs; 2010 Apr; 34(4):339-42. PubMed ID: 19663864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bone healing in rabbit calvarial critical-sized defects filled with stem cells and growth factors combined with granular or solid scaffolds.
    Lappalainen OP; Karhula S; Haapea M; Kyllönen L; Haimi S; Miettinen S; Saarakkala S; Korpi J; Ylikontiola LP; Serlo WS; Sándor GK
    Childs Nerv Syst; 2016 Apr; 32(4):681-8. PubMed ID: 26782995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Role of Three-Dimensional Scaffolds in Treating Long Bone Defects: Evidence from Preclinical and Clinical Literature-A Systematic Review.
    Roffi A; Krishnakumar GS; Gostynska N; Kon E; Candrian C; Filardo G
    Biomed Res Int; 2017; 2017():8074178. PubMed ID: 28852649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogel-based Delivery of rhBMP-2 Improves Healing of Large Bone Defects Compared With Autograft.
    Krishnan L; Priddy LB; Esancy C; Li MT; Stevens HY; Jiang X; Tran L; Rowe DW; Guldberg RE
    Clin Orthop Relat Res; 2015 Sep; 473(9):2885-97. PubMed ID: 25917422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel cell-free regeneration of bone using stem cell-derived growth factors.
    Katagiri W; Osugi M; Kawai T; Ueda M
    Int J Oral Maxillofac Implants; 2013; 28(4):1009-16. PubMed ID: 23869359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bone graft substitutes.
    Laurencin C; Khan Y; El-Amin SF
    Expert Rev Med Devices; 2006 Jan; 3(1):49-57. PubMed ID: 16359252
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone repair in the twenty-first century: biology, chemistry or engineering?
    Hing KA
    Philos Trans A Math Phys Eng Sci; 2004 Dec; 362(1825):2821-50. PubMed ID: 15539372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.