BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25772306)

  • 1. Quantification of pyrophosphate as a universal approach to determine polymerase activity and assay polymerase inhibitors.
    Malvezzi S; Sturla SJ; Tanasova M
    Anal Biochem; 2015 Jun; 478():1-7. PubMed ID: 25772306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium is a cofactor of polymerization but inhibits pyrophosphorolysis by the Sulfolobus solfataricus DNA polymerase Dpo4.
    Irimia A; Zang H; Loukachevitch LV; Eoff RL; Guengerich FP; Egli M
    Biochemistry; 2006 May; 45(19):5949-56. PubMed ID: 16681366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Analogs of pyrophosphate in a pyrophosphorolysis reaction catalyzed by DNA polymerases].
    Rozovskaia TA; Tarusova NB; Minasian ShKh; Atrazhev AM; Kukhanova MK
    Mol Biol (Mosk); 1989; 23(3):862-71. PubMed ID: 2549402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Interaction of dNTP-binding sites of human DNA polymerase alpha and The Klenow fragment of Escherichia coli DNA polymerase I with nucleotides, pyrophosphate and their analogs].
    Nevinskiĭ GA; Potapova IA; Tarusova NB; Khalabuda OV; Khomov VV
    Mol Biol (Mosk); 1990; 24(1):104-16. PubMed ID: 2161489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic basis for the differing response to an oxidative lesion by a replicative and a lesion bypass DNA polymerase from Sulfolobus solfataricus.
    Maxwell BA; Suo Z
    Biochemistry; 2012 Apr; 51(16):3485-96. PubMed ID: 22471521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stopped-flow DNA polymerase assay by continuous monitoring of dNTP incorporation by fluorescence.
    Montgomery JL; Rejali N; Wittwer CT
    Anal Biochem; 2013 Oct; 441(2):133-9. PubMed ID: 23872003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparative Analysis of Translesion DNA Synthesis Catalyzed by a High-Fidelity DNA Polymerase.
    Dasari A; Deodhar T; Berdis AJ
    J Mol Biol; 2017 Jul; 429(15):2308-2323. PubMed ID: 28601494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accessory proteins assist exonuclease-deficient bacteriophage T4 DNA polymerase in replicating past an abasic site.
    Blanca G; Delagoutte E; Tanguy le Gac N; Johnson NP; Baldacci G; Villani G
    Biochem J; 2007 Mar; 402(2):321-9. PubMed ID: 17064253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-RNA quantification using DNA polymerase and pyrophosphate quantification.
    Yu HP; Hsiao YL; Pan HY; Huang CH; Hou SY
    Anal Biochem; 2011 Dec; 419(2):228-33. PubMed ID: 21910961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination against major groove adducts by Y-family polymerases of the DinB subfamily.
    Walsh JM; Ippoliti PJ; Ronayne EA; Rozners E; Beuning PJ
    DNA Repair (Amst); 2013 Sep; 12(9):713-22. PubMed ID: 23791649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous enzyme-coupled assay of phosphate- or pyrophosphate-releasing enzymes.
    Suárez AS; Stefan A; Lemma S; Conte E; Hochkoeppler A
    Biotechniques; 2012 Aug; 53(2):99-103. PubMed ID: 23030062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence context modulation of translesion synthesis at a single N-2-acetylaminofluorene adduct located within a mutation hot spot.
    Burnouf DY; Miturski R; Fuchs RP
    Chem Res Toxicol; 1999 Feb; 12(2):144-50. PubMed ID: 10027791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid pyrophosphate release from transcriptional elongation complexes appears to be coupled to a nucleotide-induced conformational change in E. coli core polymerase.
    Johnson RS; Strausbauch M; Carraway JK
    J Mol Biol; 2011 Oct; 412(5):849-61. PubMed ID: 21624374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleoside 5'-triphosphates with modified sugars as substrates for DNA polymerases.
    Chidgeavadze ZG; Beabealashvilli RSh; Krayevsky AA; Kukhanova MK
    Biochim Biophys Acta; 1986 Nov; 868(2-3):145-52. PubMed ID: 3021225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trading places: how do DNA polymerases switch during translesion DNA synthesis?
    Friedberg EC; Lehmann AR; Fuchs RP
    Mol Cell; 2005 May; 18(5):499-505. PubMed ID: 15916957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ubiquitin-dependent regulation of translesion polymerases.
    Chun AC; Jin DY
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):110-5. PubMed ID: 20074045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast and human translesion DNA synthesis polymerases: expression, purification, and biochemical characterization.
    Johnson RE; Prakash L; Prakash S
    Methods Enzymol; 2006; 408():390-407. PubMed ID: 16793382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological roles of translesion synthesis DNA polymerases in eubacteria.
    Andersson DI; Koskiniemi S; Hughes D
    Mol Microbiol; 2010 Aug; 77(3):540-8. PubMed ID: 20609084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyzing the Catalytic Activities and Interactions of Eukaryotic Translesion Synthesis Polymerases.
    Powers KT; Washington MT
    Methods Enzymol; 2017; 592():329-356. PubMed ID: 28668126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of single nucleotide incorporation reactions by capillary electrophoresis.
    Hanes JW; Johnson KA
    Anal Biochem; 2005 May; 340(1):35-40. PubMed ID: 15802127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.