BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25772306)

  • 21. Translesion synthesis in Escherichia coli: lessons from the NarI mutation hot spot.
    Fuchs RP; Fujii S
    DNA Repair (Amst); 2007 Jul; 6(7):1032-41. PubMed ID: 17403618
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain.
    Pustovalova Y; Maciejewski MW; Korzhnev DM
    J Mol Biol; 2013 Sep; 425(17):3091-105. PubMed ID: 23747975
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polymerase-dependent DNA synthesis from phosphoramidate-activated nucleotides.
    Yang S; Herdewijn P
    Nucleosides Nucleotides Nucleic Acids; 2011; 30(7-8):597-608. PubMed ID: 21888550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ribonucleotide discrimination by translesion synthesis DNA polymerases.
    Vaisman A; Woodgate R
    Crit Rev Biochem Mol Biol; 2018 Aug; 53(4):382-402. PubMed ID: 29972306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA polymerase I acts in translesion synthesis mediated by the Y-polymerases in Bacillus subtilis.
    Duigou S; Ehrlich SD; Noirot P; Noirot-Gros MF
    Mol Microbiol; 2005 Aug; 57(3):678-90. PubMed ID: 16045613
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement of DNA Polymerase Incorporation Kinetics of Dye-Labeled Nucleotides Using Total Internal Reflection Fluorescence Microscopy.
    Walsh MT; Roller EE; Ko KS; Huang X
    Biochemistry; 2015 Jul; 54(26):4019-21. PubMed ID: 26096371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic and structural mechanisms of (5'S)-8,5'-cyclo-2'-deoxyguanosine-induced dna replication stalling.
    Xu W; Ouellette AM; Wawrzak Z; Shriver SJ; Anderson SM; Zhao L
    Biochemistry; 2015 Jan; 54(3):639-51. PubMed ID: 25569151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Real-time DNA sequencing using detection of pyrophosphate release.
    Ronaghi M; Karamohamed S; Pettersson B; Uhlén M; Nyrén P
    Anal Biochem; 1996 Nov; 242(1):84-9. PubMed ID: 8923969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A trimeric DNA polymerase complex increases the native replication processivity.
    Mikheikin AL; Lin HK; Mehta P; Jen-Jacobson L; Trakselis MA
    Nucleic Acids Res; 2009 Nov; 37(21):7194-205. PubMed ID: 19773426
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Data in support of quantification of pyrophosphate as a universal approach to determine polymerase activity and assay polymerase inhibitors.
    Malvezzi S; Sturla SJ; Tanasova M
    Data Brief; 2015 Sep; 4():14-8. PubMed ID: 26217754
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assembly and distributive action of an archaeal DNA polymerase holoenzyme.
    Bauer RJ; Wolff ID; Zuo X; Lin HK; Trakselis MA
    J Mol Biol; 2013 Nov; 425(23):4820-36. PubMed ID: 24035812
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Translesion synthesis in mammalian cells.
    Lehmann AR
    Exp Cell Res; 2006 Aug; 312(14):2673-6. PubMed ID: 16854411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cross-coupling reactions of nucleoside triphosphates followed by polymerase incorporation. Construction and applications of base-functionalized nucleic acids.
    Hocek M; Fojta M
    Org Biomol Chem; 2008 Jul; 6(13):2233-41. PubMed ID: 18563253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA polymerases eta and kappa are responsible for error-free translesion DNA synthesis activity over a cis-syn thymine dimer in Xenopus laevis oocyte extracts.
    Yagi Y; Ogawara D; Iwai S; Hanaoka F; Akiyama M; Maki H
    DNA Repair (Amst); 2005 Nov; 4(11):1252-69. PubMed ID: 16055392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A single amino acid governs enhanced activity of DinB DNA polymerases on damaged templates.
    Jarosz DF; Godoy VG; Delaney JC; Essigmann JM; Walker GC
    Nature; 2006 Jan; 439(7073):225-8. PubMed ID: 16407906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coordination ligand exchange of a xanthene probe-Ce(III) complex for selective fluorescence sensing of inorganic pyrophosphate.
    Kittiloespaisan E; Takashima I; Kiatpathomchai W; Wongkongkatep J; Ojida A
    Chem Commun (Camb); 2014 Feb; 50(17):2126-8. PubMed ID: 24419249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA polymerase θ specializes in incorporating synthetic expanded-size (xDNA) nucleotides.
    Kent T; Rusanov TD; Hoang TM; Velema WA; Krueger AT; Copeland WC; Kool ET; Pomerantz RT
    Nucleic Acids Res; 2016 Nov; 44(19):9381-9392. PubMed ID: 27591252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An NTP-driven mechanism for the nucleotide addition cycle of Escherichia coli RNA polymerase during transcription.
    Johnson RS; Strausbauch M; McCloud C
    PLoS One; 2022; 17(10):e0273746. PubMed ID: 36282801
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A quantitative fluorescence-based steady-state assay of DNA polymerase.
    Driscoll MD; Rentergent J; Hay S
    FEBS J; 2014 Apr; 281(8):2042-50. PubMed ID: 24860875
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of incorporation kinetics of non-fluorescent native nucleotides by DNA polymerases using fluorescence microscopy.
    Walsh MT; Huang X
    Nucleic Acids Res; 2017 Dec; 45(21):e175. PubMed ID: 29036327
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.