BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 25772306)

  • 41. Sequence-Specific Incorporation of Enzyme-Nucleotide Chimera by DNA Polymerases.
    Welter M; Verga D; Marx A
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):10131-5. PubMed ID: 27392211
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Targeting the Translesion Synthesis Pathway for the Development of Anti-Cancer Chemotherapeutics.
    Korzhnev DM; Hadden MK
    J Med Chem; 2016 Oct; 59(20):9321-9336. PubMed ID: 27362876
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structural Insights into the Post-Chemistry Steps of Nucleotide Incorporation Catalyzed by a DNA Polymerase.
    Reed AJ; Vyas R; Raper AT; Suo Z
    J Am Chem Soc; 2017 Jan; 139(1):465-471. PubMed ID: 27959534
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evidence for an intermediate in DNA synthesis involving pyrophosphate exchange. A possible role in fidelity.
    Lecomte P; Doubleday OP; Radman M
    J Mol Biol; 1986 Jun; 189(4):643-52. PubMed ID: 3023632
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Label-free electrical detection of pyrophosphate generated from DNA polymerase reactions on field-effect devices.
    Credo GM; Su X; Wu K; Elibol OH; Liu DJ; Reddy B; Tsai TW; Dorvel BR; Daniels JS; Bashir R; Varma M
    Analyst; 2012 Mar; 137(6):1351-62. PubMed ID: 22262038
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro production and screening of DNA polymerase eta mutants for catalytic diversity.
    Glick E; Anderson JP; Loeb LA
    Biotechniques; 2002 Nov; 33(5):1136-42, 1144. PubMed ID: 12449395
    [TBL] [Abstract][Full Text] [Related]  

  • 47. DNA polymerases of herpesviruses and their inhibitors.
    Piret J; Boivin G
    Enzymes; 2021; 50():79-132. PubMed ID: 34861944
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Preparation and Application of Enzyme-Nucleotide Conjugates.
    Welter M; Marx A
    Curr Protoc Chem Biol; 2018 Mar; 10(1):49-71. PubMed ID: 30040238
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pyrophosphate release acts as a kinetic checkpoint during high-fidelity DNA replication by the Staphylococcus aureus replicative polymerase PolC.
    Fagan SP; Mukherjee P; Jaremko WJ; Nelson-Rigg R; Wilson RC; Dangerfield TL; Johnson KA; Lahiri I; Pata JD
    Nucleic Acids Res; 2021 Aug; 49(14):8324-8338. PubMed ID: 34302475
    [TBL] [Abstract][Full Text] [Related]  

  • 50. DNA polymerases and biotechnological applications.
    Aschenbrenner J; Marx A
    Curr Opin Biotechnol; 2017 Dec; 48():187-195. PubMed ID: 28618333
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mechanistic cross-talk between DNA/RNA polymerase enzyme kinetics and nucleotide substrate availability in cells: Implications for polymerase inhibitor discovery.
    Coggins SA; Mahboubi B; Schinazi RF; Kim B
    J Biol Chem; 2020 Sep; 295(39):13432-13443. PubMed ID: 32737197
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pyrophosphate hydrolysis is an intrinsic and critical step of the DNA synthesis reaction.
    Kottur J; Nair DT
    Nucleic Acids Res; 2018 Jul; 46(12):5875-5885. PubMed ID: 29850882
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Target-Activated DNA Polymerase Activity for Sensitive RNase H Activity Assay.
    Jung Y; Lee CY; Park KS; Park HG
    Biotechnol J; 2019 Jul; 14(7):e1800645. PubMed ID: 30791223
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A colorimetric assay for inorganic pyrophosphate that is also useful for measuring product accumulation in polymerase chain reactions.
    Tagiri-Endo M
    Anal Biochem; 2003 Apr; 315(2):170-4. PubMed ID: 12689826
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluating the Rate and Substrate Specificity of Laboratory Evolved XNA Polymerases.
    Nikoomanzar A; Dunn MR; Chaput JC
    Anal Chem; 2017 Dec; 89(23):12622-12625. PubMed ID: 29148714
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Steady-state kinetic analysis of DNA polymerase single-nucleotide incorporation products.
    O'Flaherty DK; Guengerich FP
    Curr Protoc Nucleic Acid Chem; 2014 Dec; 59():7.21.1-13. PubMed ID: 25501593
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A high-throughput screening method to reengineer DNA polymerases for random mutagenesis.
    Kardashliev T; Ruff AJ; Zhao J; Schwaneberg U
    Mol Biotechnol; 2014 Mar; 56(3):274-83. PubMed ID: 24122281
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A mass spectrometry-based approach for identifying novel DNA polymerase substrates from a pool of dNTP analogues.
    Kincaid K; Kuchta RD
    Nucleic Acids Res; 2006; 34(16):e109. PubMed ID: 16945949
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Inhibiting translesion DNA synthesis as an approach to combat drug resistance to DNA damaging agents.
    Choi JS; Kim S; Motea E; Berdis A
    Oncotarget; 2017 Jun; 8(25):40804-40816. PubMed ID: 28489578
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Accurate Digital Polymerase Chain Reaction Quantification of Challenging Samples Applying Inhibitor-Tolerant DNA Polymerases.
    Sidstedt M; Romsos EL; Hedell R; Ansell R; Steffen CR; Vallone PM; Rådström P; Hedman J
    Anal Chem; 2017 Feb; 89(3):1642-1649. PubMed ID: 28118703
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.