BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 2577265)

  • 1. Effects of CNQX, APB, PDA, and kynurenate on horizontal cells of the tiger salamander retina.
    Yang XL; Wu SM
    Vis Neurosci; 1989 Sep; 3(3):207-12. PubMed ID: 2577265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coexistence and function of glutamate receptor subtypes in the horizontal cells of the tiger salamander retina.
    Yang XL; Wu SM
    Vis Neurosci; 1991 Oct; 7(4):377-82. PubMed ID: 1661137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of glutamate receptor subtypes mediating inputs to bipolar cells and ganglion cells in the tiger salamander retina.
    Hensley SH; Yang XL; Wu SM
    J Neurophysiol; 1993 Jun; 69(6):2099-107. PubMed ID: 7688801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitatory amino acid receptors of rod- and cone-driven horizontal cells in the rabbit retina.
    Massey SC; Miller RF
    J Neurophysiol; 1987 Mar; 57(3):645-59. PubMed ID: 3031231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two types of glutamate receptors differentially excite amacrine cells in the tiger salamander retina.
    Dixon DB; Copenhagen DR
    J Physiol; 1992 Apr; 449():589-606. PubMed ID: 1355793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitatory amino acid receptor mediation of sensory inputs to functionally identified dorsal horn neurons in cat spinal cord.
    Radhakrishnan V; Henry JL
    Neuroscience; 1993 Jul; 55(2):531-44. PubMed ID: 7690912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of L-glutamate, AMPA, quisqualate, and kainate on retinal horizontal cells depend on adaptational state: implications for rod-cone interactions.
    Krizaj D; Akopian A; Witkovsky P
    J Neurosci; 1994 Sep; 14(9):5661-71. PubMed ID: 7521912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glutamate receptors of ganglion cells in the rabbit retina: evidence for glutamate as a bipolar cell transmitter.
    Massey SC; Miller RF
    J Physiol; 1988 Nov; 405():635-55. PubMed ID: 2908248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the glutamate transporter in retinal cones of the tiger salamander.
    Eliasof S; Werblin F
    J Neurosci; 1993 Jan; 13(1):402-11. PubMed ID: 8093715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rods and cones activate different excitatory amino acid receptors on the mudpuppy retinal horizontal cell.
    Kim HG; Miller RF
    Brain Res; 1991 Jan; 538(1):141-6. PubMed ID: 1673359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-NMDA type excitatory amino acid receptors mediate rod input to horizontal cells in the isolated rat retina.
    Hankins MW; Ikeda H
    Vision Res; 1991; 31(4):609-17. PubMed ID: 1688218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of excitatory amino acids and analogues on [3H]acetylcholine release from amacrine cells of the rabbit retina.
    Cunningham JR; Neal MJ
    J Physiol; 1985 Sep; 366():47-62. PubMed ID: 2865360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of experimental ischaemia and excitatory amino acid agonists on the GABA and serotonin immunoreactivities in the rabbit retina.
    Osborne NN; Herrera AJ
    Neuroscience; 1994 Apr; 59(4):1071-81. PubMed ID: 7520132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective blockade of non-NMDA receptors does not block rapidly triggered glutamate-induced neuronal death.
    Koh JY; Choi DW
    Brain Res; 1991 May; 548(1-2):318-21. PubMed ID: 1678302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CNQX (6-cyano-7-nitroquinoxaline-2,3-dione) antagonizes NMDA-evoked [3H]GABA release from cultured cortical neurons via an inhibitory action at the strychnine-insensitive glycine site.
    Harris KM; Miller RJ
    Brain Res; 1989 Jun; 489(1):185-9. PubMed ID: 2568152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-methyl-D-aspartate/glycine and quisqualate/kainate receptors expressed in Xenopus oocytes: antagonist pharmacology.
    Verdoorn TA; Kleckner NW; Dingledine R
    Mol Pharmacol; 1989 Mar; 35(3):360-8. PubMed ID: 2564633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex pharmacological properties of recombinant alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subtypes.
    Stein E; Cox JA; Seeburg PH; Verdoorn TA
    Mol Pharmacol; 1992 Nov; 42(5):864-71. PubMed ID: 1279377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of aspartate and glutamate in synaptic transmission in rabbit retina. I. Outer plexiform layer.
    Bloomfield SA; Dowling JE
    J Neurophysiol; 1985 Mar; 53(3):699-713. PubMed ID: 2858516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate as a putative neurotransmitter in the buccal central pattern generator of Helisoma trivolvis.
    Quinlan EM; Murphy AD
    J Neurophysiol; 1991 Oct; 66(4):1264-71. PubMed ID: 1684808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postsynaptic responses of horizontal cells in the tiger salamander retina are mediated by AMPA-preferring receptors.
    Yang JH; Maple B; Gao F; Maguire G; Wu SM
    Brain Res; 1998 Jun; 797(1):125-34. PubMed ID: 9630565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.