These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 25773051)

  • 1. Direct in situ observation of metallic glass deformation by real-time nano-scale indentation.
    Gu L; Xu L; Zhang Q; Pan D; Chen N; Louzguine-Luzgin DV; Yao KF; Wang W; Ikuhara Y
    Sci Rep; 2015 Mar; 5():9122. PubMed ID: 25773051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Critical Criterion on Runaway Shear Banding in Metallic Glasses.
    Sun BA; Yang Y; Wang WH; Liu CT
    Sci Rep; 2016 Feb; 6():21388. PubMed ID: 26893196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dilatancy induced ductile-brittle transition of shear band in metallic glasses.
    Zeng F; Jiang MQ; Dai LH
    Proc Math Phys Eng Sci; 2018 Apr; 474(2212):20170836. PubMed ID: 29740259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shear-banding Induced Indentation Size Effect in Metallic Glasses.
    Lu YM; Sun BA; Zhao LZ; Wang WH; Pan MX; Liu CT; Yang Y
    Sci Rep; 2016 Jun; 6():28523. PubMed ID: 27324835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation.
    He J; Kaban I; Mattern N; Song K; Sun B; Zhao J; Kim do H; Eckert J; Greer AL
    Sci Rep; 2016 May; 6():25832. PubMed ID: 27181922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing heat generation during tensile plastic deformation of a bulk metallic glass at cryogenic temperature.
    Brennhaugen DDE; Georgarakis K; Yokoyama Y; Nakayama KS; Arnberg L; Aune RE
    Sci Rep; 2018 Nov; 8(1):16317. PubMed ID: 30397243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tensile ductility and necking of metallic glass.
    Guo H; Yan PF; Wang YB; Tan J; Zhang ZF; Sui ML; Ma E
    Nat Mater; 2007 Oct; 6(10):735-9. PubMed ID: 17704779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation behavior of metallic glasses with shear band like atomic structure: a molecular dynamics study.
    Zhong C; Zhang H; Cao QP; Wang XD; Zhang DX; Ramamurty U; Jiang JZ
    Sci Rep; 2016 Aug; 6():30935. PubMed ID: 27480496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticity of ductile metallic glasses: a self-organized critical state.
    Sun BA; Yu HB; Jiao W; Bai HY; Zhao DQ; Wang WH
    Phys Rev Lett; 2010 Jul; 105(3):035501. PubMed ID: 20867777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The shear band controlled deformation in metallic glass: a perspective from fracture.
    Yang GN; Shao Y; Yao KF
    Sci Rep; 2016 Feb; 6():21852. PubMed ID: 26899145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear-band affected zone revealed by magnetic domains in a ferromagnetic metallic glass.
    Shen LQ; Luo P; Hu YC; Bai HY; Sun YH; Sun BA; Liu YH; Wang WH
    Nat Commun; 2018 Oct; 9(1):4414. PubMed ID: 30356051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation-Induced Crystal Growth or Redissolution, and Crystal-Induced Strengthening or Ductilization in Metallic Glasses Containing Nanocrystals.
    Thaiyanurak T; Soonthornkit S; Gordon O; Feng Z; Xu D
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crossover from random three-dimensional avalanches to correlated nano shear bands in metallic glasses.
    Krisponeit JO; Pitikaris S; Avila KE; Küchemann S; Krüger A; Samwer K
    Nat Commun; 2014 Apr; 5():3616. PubMed ID: 24717842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-situ tensile testing of ZrCu-based metallic glass composites.
    Sun HC; Ning ZL; Wang G; Liang WZ; Pauly S; Huang YJ; Guo S; Xue X; Sun JF
    Sci Rep; 2018 Mar; 8(1):4651. PubMed ID: 29545571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower nanometer-scale size limit for the deformation of a metallic glass by shear transformations revealed by quantitative AFM indentation.
    Caron A; Bennewitz R
    Beilstein J Nanotechnol; 2015; 6():1721-32. PubMed ID: 26425424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective temperature dynamics of shear bands in metallic glasses.
    Daub EG; Klaumünzer D; Löffler JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062405. PubMed ID: 25615110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Signature of Plasticity Unveiled by Nano-Scale Viscoelastic Contact in a Metallic Glass.
    Lu YM; Zeng JF; Wang S; Sun BA; Wang Q; Lu J; Gravier S; Bladin JJ; Wang WH; Pan MX; Liu CT; Yang Y
    Sci Rep; 2016 Jul; 6():29357. PubMed ID: 27383387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraordinary plasticity of ductile bulk metallic glasses.
    Chen M; Inoue A; Zhang W; Sakurai T
    Phys Rev Lett; 2006 Jun; 96(24):245502. PubMed ID: 16907252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass.
    Pan J; Ivanov YP; Zhou WH; Li Y; Greer AL
    Nature; 2020 Feb; 578(7796):559-562. PubMed ID: 32103194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nucleation of shear bands in amorphous alloys.
    Perepezko JH; Imhoff SD; Chen MW; Wang JQ; Gonzalez S
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):3938-42. PubMed ID: 24594599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.