These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 25773152)
1. HMGB1 expression patterns during the progression of experimental autoimmune encephalomyelitis. Sun Y; Chen H; Dai J; Zou H; Gao M; Wu H; Ming B; Lai L; Xiao Y; Xiong P; Xu Y; Gong F; Zheng F J Neuroimmunol; 2015 Mar; 280():29-35. PubMed ID: 25773152 [TBL] [Abstract][Full Text] [Related]
2. Expression of iron homeostasis proteins in the spinal cord in experimental autoimmune encephalomyelitis and their implications for iron accumulation. Zarruk JG; Berard JL; Passos dos Santos R; Kroner A; Lee J; Arosio P; David S Neurobiol Dis; 2015 Sep; 81():93-107. PubMed ID: 25724358 [TBL] [Abstract][Full Text] [Related]
3. Expression of the neuroprotective protein aryl hydrocarbon receptor nuclear translocator 2 correlates with neuronal stress and disability in models of multiple sclerosis. Rahim T; Becquart P; Baeva ME; Quandt J J Neuroinflammation; 2018 Sep; 15(1):270. PubMed ID: 30231889 [TBL] [Abstract][Full Text] [Related]
4. Preventing the BDNF and NGF loss involved in the effects of cornel iridoid glycoside on attenuation of experimental autoimmune encephalomyelitis in mice. Qu Z; Zheng N; Zhang Y; Zhang L; Liu J; Wang Q; Yin L Neurol Res; 2016 Sep; 38(9):831-7. PubMed ID: 27373350 [TBL] [Abstract][Full Text] [Related]
5. Total glucosides of peony attenuates experimental autoimmune encephalomyelitis in C57BL/6 mice. Huang Q; Ma X; Zhu DL; Chen L; Jiang Y; Zhou L; Cen L; Pi R; Chen X J Neuroimmunol; 2015 Jul; 284():67-73. PubMed ID: 26025060 [TBL] [Abstract][Full Text] [Related]
6. Efficacy of the selective progesterone receptor agonist Nestorone for chronic experimental autoimmune encephalomyelitis. Garay L; Gonzalez Deniselle MC; Sitruk-Ware R; Guennoun R; Schumacher M; De Nicola AF J Neuroimmunol; 2014 Nov; 276(1-2):89-97. PubMed ID: 25200475 [TBL] [Abstract][Full Text] [Related]
7. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. Talebi F; Ghorbani S; Chan WF; Boghozian R; Masoumi F; Ghasemi S; Vojgani M; Power C; Noorbakhsh F J Neuroinflammation; 2017 Mar; 14(1):55. PubMed ID: 28302134 [TBL] [Abstract][Full Text] [Related]
9. Disease progression after bone marrow transplantation in a model of multiple sclerosis is associated with chronic microglial and glial progenitor response. Cassiani-Ingoni R; Muraro PA; Magnus T; Reichert-Scrivner S; Schmidt J; Huh J; Quandt JA; Bratincsak A; Shahar T; Eusebi F; Sherman LS; Mattson MP; Martin R; Rao MS J Neuropathol Exp Neurol; 2007 Jul; 66(7):637-49. PubMed ID: 17620989 [TBL] [Abstract][Full Text] [Related]
11. Genetic inactivation of the adenosine A(2A) receptor exacerbates brain damage in mice with experimental autoimmune encephalomyelitis. Yao SQ; Li ZZ; Huang QY; Li F; Wang ZW; Augusto E; He JC; Wang XT; Chen JF; Zheng RY J Neurochem; 2012 Oct; 123(1):100-12. PubMed ID: 22639925 [TBL] [Abstract][Full Text] [Related]
12. The MAO inhibitor phenelzine can improve functional outcomes in mice with established clinical signs in experimental autoimmune encephalomyelitis (EAE). Benson CA; Wong G; Tenorio G; Baker GB; Kerr BJ Behav Brain Res; 2013 Sep; 252():302-11. PubMed ID: 23777648 [TBL] [Abstract][Full Text] [Related]
14. Transcript analysis of laser capture microdissected white matter astrocytes and higher phenol sulfotransferase 1A1 expression during autoimmune neuroinflammation. Guillot F; Garcia A; Salou M; Brouard S; Laplaud DA; Nicot AB J Neuroinflammation; 2015 Jul; 12():130. PubMed ID: 26141738 [TBL] [Abstract][Full Text] [Related]
15. Cytokine production profiles in chronic relapsing-remitting experimental autoimmune encephalomyelitis: IFN-γ and TNF-α are important participants in the first attack but not in the relapse. Hidaka Y; Inaba Y; Matsuda K; Itoh M; Kaneyama T; Nakazawa Y; Koh CS; Ichikawa M J Neurol Sci; 2014 May; 340(1-2):117-22. PubMed ID: 24655735 [TBL] [Abstract][Full Text] [Related]
16. Kinematic gait parameters are highly sensitive measures of motor deficits and spinal cord injury in mice subjected to experimental autoimmune encephalomyelitis. Fiander MD; Stifani N; Nichols M; Akay T; Robertson GS Behav Brain Res; 2017 Jan; 317():95-108. PubMed ID: 27639322 [TBL] [Abstract][Full Text] [Related]
17. Phosphodiesterase 5 inhibition at disease onset prevents experimental autoimmune encephalomyelitis progression through immunoregulatory and neuroprotective actions. Pifarré P; Gutierrez-Mecinas M; Prado J; Usero L; Roura-Mir C; Giralt M; Hidalgo J; García A Exp Neurol; 2014 Jan; 251():58-71. PubMed ID: 24211383 [TBL] [Abstract][Full Text] [Related]
18. Repetitive intrathecal injection of human NMO-IgG with complement exacerbates disease severity with NMO pathology in experimental allergic encephalomyelitis mice. Lee CL; Wang KC; Chen SJ; Chen CM; Tsai CP; Chen SY Mult Scler Relat Disord; 2019 May; 30():225-230. PubMed ID: 30825702 [TBL] [Abstract][Full Text] [Related]
19. Bone morphogenetic proteins 4, 6, and 7 are up-regulated in mouse spinal cord during experimental autoimmune encephalomyelitis. Ara J; See J; Mamontov P; Hahn A; Bannerman P; Pleasure D; Grinspan JB J Neurosci Res; 2008 Jan; 86(1):125-35. PubMed ID: 17722066 [TBL] [Abstract][Full Text] [Related]
20. Combination of cuprizone and experimental autoimmune encephalomyelitis to study inflammatory brain lesion formation and progression. Rüther BJ; Scheld M; Dreymueller D; Clarner T; Kress E; Brandenburg LO; Swartenbroekx T; Hoornaert C; Ponsaerts P; Fallier-Becker P; Beyer C; Rohr SO; Schmitz C; Chrzanowski U; Hochstrasser T; Nyamoya S; Kipp M Glia; 2017 Dec; 65(12):1900-1913. PubMed ID: 28836302 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]