These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 25773240)

  • 1. Identification of the muscarinic receptor subtypes involved in autoregulation of acetylcholine quantal release from frog motor nerve endings.
    Kovyazina IV; Tsentsevitsky AN; Nikolsky EE
    Dokl Biol Sci; 2015; 460():5-7. PubMed ID: 25773240
    [No Abstract]   [Full Text] [Related]  

  • 2. Quantal acetylcholine release at the vertebrate neuromuscular junction.
    Van der Kloot W; Molgó J
    Physiol Rev; 1994 Oct; 74(4):899-991. PubMed ID: 7938228
    [No Abstract]   [Full Text] [Related]  

  • 3. Low-frequency neuromuscular depression is a consequence of a reduction in nerve terminal Ca2+ currents at mammalian motor nerve endings.
    Silinsky EM
    Anesthesiology; 2013 Aug; 119(2):326-34. PubMed ID: 23535502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium dependence of spontaneous acetylcholine release at mammalian motor nerve terminals.
    Elmqvist D; Feldman DS
    J Physiol; 1965 Dec; 181(3):487-97. PubMed ID: 4956407
    [No Abstract]   [Full Text] [Related]  

  • 5. Purine P2Y receptors in ATP-mediated regulation of non-quantal acetylcholine release from motor nerve endings of rat diaphragm.
    Malomouzh AI; Nikolsky EE; Vyskočil F
    Neurosci Res; 2011 Nov; 71(3):219-25. PubMed ID: 21821069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of nerve terminal activity on non-quantal release of acetylcholine at the mouse neuromuscular junction.
    Zemková H; Vyskocil F; Edwards C
    J Physiol; 1990 Apr; 423():631-40. PubMed ID: 2388160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective depletion of clear synaptic vesicles and enhanced quantal transmitter release at frog motor nerve endings produced by trachynilysin, a protein toxin isolated from stonefish (Synanceia trachynis) venom.
    Colasante C; Meunier FA; Kreger AS; Molgó J
    Eur J Neurosci; 1996 Oct; 8(10):2149-56. PubMed ID: 8921306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporation of synaptotagmin II to the axolemma of botulinum type-A poisoned mouse motor endings during enhanced quantal acetylcholine release.
    Angaut-Petit D; Molgó J; Faille L; Juzans P; Takahashi M
    Brain Res; 1998 Jun; 797(2):357-60. PubMed ID: 9666170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmitter release from frog motor nerve terminals depends on motor unit size.
    Herrera AA; Grinnell AD
    Nature; 1980 Oct; 287(5783):649-51. PubMed ID: 6159542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Kinetic analyses of acetylcholine release from motor nerve terminals].
    Maeno T
    Nihon Seirigaku Zasshi; 1992; 54(3):91-107. PubMed ID: 1316962
    [No Abstract]   [Full Text] [Related]  

  • 11. Constraints on the interpretation of nonquantal acetylcholine release from frog neuromuscular junctions.
    Meriney SD; Young SH; Grinnell AD
    Proc Natl Acad Sci U S A; 1989 Mar; 86(6):2098-102. PubMed ID: 2784566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ionomycin-induced acetylcholine release and its inhibition by adenosine at frog motor nerve endings.
    Hunt JM; Silinsky EM
    Br J Pharmacol; 1993 Oct; 110(2):828-32. PubMed ID: 8242258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adrenaline Facilitates Synaptic Transmission by Synchronizing Release of Acetylcholine Quanta from Motor Nerve Endings.
    Khuzakhmetova V; Bukharaeva E
    Cell Mol Neurobiol; 2021 Mar; 41(2):395-401. PubMed ID: 32274597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The heterogeneity of vesicular acetylcholine storage in cholinergic nerve terminals.
    Prior C; Tian L
    Pharmacol Res; 1995 Dec; 32(6):345-53. PubMed ID: 8736485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decrease in calcium currents induced by aminoglycoside antibiotics in frog motor nerve endings.
    Redman RS; Silinsky EM
    Br J Pharmacol; 1994 Oct; 113(2):375-8. PubMed ID: 7834186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substance P-like immunoreactivity at the frog neuromuscular junction.
    Matteoli M; Haimann C; De Camilli P
    Neuroscience; 1990; 37(1):271-5. PubMed ID: 1700842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presynaptic regulation of the release of acetylcholine by 5-hydroxytryptamine.
    Hirai K; Koketsu K
    Br J Pharmacol; 1980 Nov; 70(3):499-500. PubMed ID: 6969102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of hydrogen peroxide on spontaneous quantal and nonquantal acetylcholine release from rat motor nerve endings.
    Shakirzyanova AV; Malomouzh AI; Naumenko NV; Nikolsky EE
    Dokl Biol Sci; 2009; 424():18-20. PubMed ID: 19341075
    [No Abstract]   [Full Text] [Related]  

  • 19. [Facilitatory effect of Pinellia ternata lectin on quantal release of acetylcholine from nerve terminals].
    Shi YL; Xu YF; Wang WP; Xu K; Guo M; Wang KY
    Zhongguo Yao Li Xue Bao; 1992 Nov; 13(6):513-6. PubMed ID: 1338862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantal ATP release from motor nerve endings and its role in neurally mediated depression.
    Silinsky EM; Hirsh JK; Searl TJ; Redman RS; Watanabe M
    Prog Brain Res; 1999; 120():145-58. PubMed ID: 10550994
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.