These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Natural variation and the capacity to adapt to ocean acidification in the keystone sea urchin Strongylocentrotus purpuratus. Kelly MW; Padilla-Gamiño JL; Hofmann GE Glob Chang Biol; 2013 Aug; 19(8):2536-46. PubMed ID: 23661315 [TBL] [Abstract][Full Text] [Related]
5. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment. Evans TG; Chan F; Menge BA; Hofmann GE Mol Ecol; 2013 Mar; 22(6):1609-25. PubMed ID: 23317456 [TBL] [Abstract][Full Text] [Related]
6. Effects of seawater acidification on gene expression: resolving broader-scale trends in sea urchins. Evans TG; Watson-Wynn P Biol Bull; 2014 Jun; 226(3):237-54. PubMed ID: 25070868 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary change during experimental ocean acidification. Pespeni MH; Sanford E; Gaylord B; Hill TM; Hosfelt JD; Jaris HK; LaVigne M; Lenz EA; Russell AD; Young MK; Palumbi SR Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6937-42. PubMed ID: 23569232 [TBL] [Abstract][Full Text] [Related]
8. Early developmental gene regulation in Strongylocentrotus purpuratus embryos in response to elevated CO₂ seawater conditions. Hammond LM; Hofmann GE J Exp Biol; 2012 Jul; 215(Pt 14):2445-54. PubMed ID: 22723484 [TBL] [Abstract][Full Text] [Related]
9. Temperature and CO(2) additively regulate physiology, morphology and genomic responses of larval sea urchins, Strongylocentrotus purpuratus. Padilla-Gamiño JL; Kelly MW; Evans TG; Hofmann GE Proc Biol Sci; 2013 May; 280(1759):20130155. PubMed ID: 23536595 [TBL] [Abstract][Full Text] [Related]
10. Genomic Characterization of the Evolutionary Potential of the Sea Urchin Strongylocentrotus droebachiensis Facing Ocean Acidification. Runcie DE; Dorey N; Garfield DA; Stumpp M; Dupont S; Wray GA Genome Biol Evol; 2016 Dec; 8(12):3672-3684. PubMed ID: 28082601 [TBL] [Abstract][Full Text] [Related]
11. Signs of adaptation to local pH conditions across an environmental mosaic in the California Current Ecosystem. Pespeni MH; Chan F; Menge BA; Palumbi SR Integr Comp Biol; 2013 Nov; 53(5):857-70. PubMed ID: 23980118 [TBL] [Abstract][Full Text] [Related]
12. Experimental ocean acidification alters the allocation of metabolic energy. Pan TC; Applebaum SL; Manahan DT Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4696-701. PubMed ID: 25825763 [TBL] [Abstract][Full Text] [Related]
13. Unique Genomic and Phenotypic Responses to Extreme and Variable pH Conditions in Purple Urchin Larvae. Garrett AD; Brennan RS; Steinhart AL; Pelletier AM; Pespeni MH Integr Comp Biol; 2020 Aug; 60(2):318-331. PubMed ID: 32544238 [TBL] [Abstract][Full Text] [Related]
14. Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification? Collard M; De Ridder C; David B; Dehairs F; Dubois P Glob Chang Biol; 2015 Feb; 21(2):605-17. PubMed ID: 25270127 [TBL] [Abstract][Full Text] [Related]
15. Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO₂ induced seawater acidification. Stumpp M; Trübenbach K; Brennecke D; Hu MY; Melzner F Aquat Toxicol; 2012 Apr; 110-111():194-207. PubMed ID: 22343465 [TBL] [Abstract][Full Text] [Related]
16. Tipping points of gastric pH regulation and energetics in the sea urchin larva exposed to CO Lee HG; Stumpp M; Yan JJ; Tseng YC; Heinzel S; Hu MY Comp Biochem Physiol A Mol Integr Physiol; 2019 Aug; 234():87-97. PubMed ID: 31022521 [TBL] [Abstract][Full Text] [Related]
17. CO2 induced seawater acidification impacts sea urchin larval development II: gene expression patterns in pluteus larvae. Stumpp M; Dupont S; Thorndyke MC; Melzner F Comp Biochem Physiol A Mol Integr Physiol; 2011 Nov; 160(3):320-30. PubMed ID: 21742049 [TBL] [Abstract][Full Text] [Related]
18. Transcriptomics reveal transgenerational effects in purple sea urchin embryos: Adult acclimation to upwelling conditions alters the response of their progeny to differential pCO Wong JM; Johnson KM; Kelly MW; Hofmann GE Mol Ecol; 2018 Mar; 27(5):1120-1137. PubMed ID: 29411447 [TBL] [Abstract][Full Text] [Related]
20. Probabilistic risk assessment of the effect of acidified seawater on development stages of sea urchin (Strongylocentrotus droebachiensis). Chen WY; Lin HC Environ Sci Pollut Res Int; 2018 May; 25(13):12947-12956. PubMed ID: 29478168 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]