BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25773363)

  • 1. Ruthenium-catalyzed aerobic oxidative decarboxylation of amino acids: a green, zero-waste route to biobased nitriles.
    Claes L; Verduyckt J; Stassen I; Lagrain B; De Vos DE
    Chem Commun (Camb); 2015 Apr; 51(30):6528-31. PubMed ID: 25773363
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-based nitriles from the heterogeneously catalyzed oxidative decarboxylation of amino acids.
    Claes L; Matthessen R; Rombouts I; Stassen I; De Baerdemaeker T; Depla D; Delcour JA; Lagrain B; De Vos DE
    ChemSusChem; 2015 Jan; 8(2):345-52. PubMed ID: 25470619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A practical and benign synthesis of primary amines through ruthenium-catalyzed reduction of nitriles.
    Enthaler S; Junge K; Addis D; Erre G; Beller M
    ChemSusChem; 2008; 1(12):1006-10. PubMed ID: 19034895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ruthenium-catalyzed oxidative cyanation of tertiary amines with molecular oxygen or hydrogen peroxide and sodium cyanide: sp3 C-H bond activation and carbon-carbon bond formation.
    Murahashi S; Nakae T; Terai H; Komiya N
    J Am Chem Soc; 2008 Aug; 130(33):11005-12. PubMed ID: 18646852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ruthenium-catalyzed aerobic oxidative cyclization of aromatic and heteroaromatic nitriles with alkynes: a new route to isoquinolones.
    Reddy MC; Manikandan R; Jeganmohan M
    Chem Commun (Camb); 2013 Jul; 49(54):6060-2. PubMed ID: 23722966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general and environmentally benign catalytic reduction of nitriles to primary amines.
    Enthaler S; Addis D; Junge K; Erre G; Beller M
    Chemistry; 2008; 14(31):9491-4. PubMed ID: 18816551
    [No Abstract]   [Full Text] [Related]  

  • 7. Ruthenium-catalyzed [2+2+2] cycloaddition of diynes with nitriles in pure water.
    Xu F; Wang C; Li X; Wan B
    ChemSusChem; 2012 May; 5(5):854-7. PubMed ID: 22415949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-catalyzed oxidative decarboxylative arylation of benzothiazoles with phenylacetic acids and α-hydroxyphenylacetic acids with O2 as the sole oxidant.
    Song Q; Feng Q; Zhou M
    Org Lett; 2013 Dec; 15(23):5990-3. PubMed ID: 24251373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green, catalytic oxidations of alcohols.
    Sheldon RA; Arends IW; Ten Brink GJ; Dijksman A
    Acc Chem Res; 2002 Sep; 35(9):774-81. PubMed ID: 12234207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AIBN-catalyzed oxidative cleavage of gem-disubstituted alkenes with O2 as an oxidant.
    Wang GZ; Li XL; Dai JJ; Xu HJ
    J Org Chem; 2014 Aug; 79(15):7220-5. PubMed ID: 25033394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-H functionalization of phenols using combined ruthenium and photoredox catalysis: in situ generation of the oxidant.
    Fabry DC; Ronge MA; Zoller J; Rueping M
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2801-5. PubMed ID: 25644740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ruthenium(II)-catalyzed C-H activation/alkyne annulation by weak coordination with O2 as the sole oxidant.
    Warratz S; Kornhaaß C; Cajaraville A; Niepötter B; Stalke D; Ackermann L
    Angew Chem Int Ed Engl; 2015 Apr; 54(18):5513-7. PubMed ID: 25737001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of Organic Compounds Using Water as the Oxidant with H
    Kar S; Milstein D
    Acc Chem Res; 2022 Aug; 55(16):2304-2315. PubMed ID: 35881940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ruthenium-catalyzed oxidation of alkenes, alkynes, and alcohols to organic acids with aqueous hydrogen peroxide.
    Che CM; Yip WP; Yu WY
    Chem Asian J; 2006 Sep; 1(3):453-8. PubMed ID: 17441082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient selective oxidation of alcohols to carbonyl compounds catalyzed by ruthenium (III) meso-tetraphenylporphyrin chloride in the presence of molecular oxygen.
    Ji HB; Yuan QL; Zhou XT; Pei LX; Wang LF
    Bioorg Med Chem Lett; 2007 Nov; 17(22):6364-8. PubMed ID: 17889529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ruthenium-catalyzed selective N ,N-diallylation- and N ,N ,O-triallylation of free amino acids.
    Sundararaju B; Achard M; Sharma GV; Bruneau C
    Org Biomol Chem; 2009 Oct; 7(19):3906-9. PubMed ID: 19763288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aerobic ruthenium-catalyzed oxidative cyanation of tertiary amines with sodium cyanide.
    Murahashi S; Komiya N; Terai H; Nakae T
    J Am Chem Soc; 2003 Dec; 125(50):15312-3. PubMed ID: 14664574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of visible-light responsive heterogeneous and homogeneous photocatalysts for water oxidation.
    Fukuzumi S; Kato S; Suenobu T
    Phys Chem Chem Phys; 2011 Oct; 13(40):17960-3. PubMed ID: 21931899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Nanorust"-catalyzed benign oxidation of amines for selective synthesis of nitriles.
    Jagadeesh RV; Junge H; Beller M
    ChemSusChem; 2015 Jan; 8(1):92-6. PubMed ID: 25346336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient ruthenium-catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system.
    Samec JS; Ell AH; Bäckvall JE
    Chemistry; 2005 Apr; 11(8):2327-34. PubMed ID: 15706621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.