These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 25773368)

  • 1. Erythrocyte shape classification using integral-geometry-based methods.
    Gual-Arnau X; Herold-García S; Simó A
    Med Biol Eng Comput; 2015 Jul; 53(7):623-33. PubMed ID: 25773368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diagnosis support of sickle cell anemia by classifying red blood cell shape in peripheral blood images.
    Delgado-Font W; Escobedo-Nicot M; González-Hidalgo M; Herold-Garcia S; Jaume-I-Capó A; Mir A
    Med Biol Eng Comput; 2020 Jun; 58(6):1265-1284. PubMed ID: 32222951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Methods for Morphological Erythrocytes Classification.
    Herold-Garcia S; Fernandes LAF
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4068-4071. PubMed ID: 31946765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red blood cell cluster separation from digital images for use in sickle cell disease.
    González-Hidalgo M; Guerrero-Peña FA; Herold-García S; Jaume-I-Capó A; Marrero-Fernández PD
    IEEE J Biomed Health Inform; 2015 Jul; 19(4):1514-25. PubMed ID: 25216490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of red blood cells as normal, sickle, or other abnormal, using a single image analysis feature.
    Wheeless LL; Robinson RD; Lapets OP; Cox C; Rubio A; Weintraub M; Benjamin LJ
    Cytometry; 1994 Oct; 17(2):159-66. PubMed ID: 7835166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study on statistical method of distribution for erythrocyte morphological features by computerized image processing].
    Hao B; Luo J; Yin G; Zheng C; Zheng Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Dec; 17(4):429-32, 443. PubMed ID: 11211832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative microscopy approach for shape-based erythrocytes characterization in anaemia.
    Das DK; Chakraborty C; Mitra B; Maiti AK; Ray AK
    J Microsc; 2013 Feb; 249(2):136-49. PubMed ID: 23252834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Review of Automated Methods for the Detection of Sickle Cell Disease.
    Das PK; Meher S; Panda R; Abraham A
    IEEE Rev Biomed Eng; 2020; 13():309-324. PubMed ID: 31107662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A deep convolutional neural network for classification of red blood cells in sickle cell anemia.
    Xu M; Papageorgiou DP; Abidi SZ; Dao M; Zhao H; Karniadakis GE
    PLoS Comput Biol; 2017 Oct; 13(10):e1005746. PubMed ID: 29049291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Ensemble Rule Learning Approach for Automated Morphological Classification of Erythrocytes.
    Maity M; Mungle T; Dhane D; Maiti AK; Chakraborty C
    J Med Syst; 2017 Apr; 41(4):56. PubMed ID: 28247304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic area classification in peripheral blood smears.
    Xiong W; Ong SH; Lim JH; Foong KW; Liu J; Racoceanu D; Chong AG; Tan KS
    IEEE Trans Biomed Eng; 2010 Aug; 57(8):1982-90. PubMed ID: 20199933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis on the erythrocyte shape changes using wavelet transforms.
    Kavitha A; Ramakrishnan S
    Clin Hemorheol Microcirc; 2005; 33(4):327-35. PubMed ID: 16317242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Healthy and unhealthy red blood cell detection in human blood smears using neural networks.
    Elsalamony HA
    Micron; 2016 Apr; 83():32-41. PubMed ID: 26867209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Textural differences between AA and SS blood specimens as detected by image analysis.
    Robinson RD; Benjamin LJ; Cosgriff JM; Cox C; Lapets OP; Rowley PT; Yatco E; Wheeless LL
    Cytometry; 1994 Oct; 17(2):167-72. PubMed ID: 7835167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphologic studies of sickle erythrocytes by image analysis.
    Horiuchi K; Ohata J; Hirano Y; Asakura T
    J Lab Clin Med; 1990 May; 115(5):613-20. PubMed ID: 2341764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic tracking of labeled red blood cells in microchannels.
    Pinho D; Lima R; Pereira AI; Gayubo F
    Int J Numer Method Biomed Eng; 2013 Sep; 29(9):977-87. PubMed ID: 23345054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images.
    Díaz G; González FA; Romero E
    J Biomed Inform; 2009 Apr; 42(2):296-307. PubMed ID: 19166974
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic Identification of Human Erythrocytes in Microscopic Fecal Specimens.
    Liu L; Lei H; Zhang J; Yuan Y; Zhang Z; Liu J; Xie Y; Ni G; Liu Y
    J Med Syst; 2015 Nov; 39(11):146. PubMed ID: 26349804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label-free sensor for automatic identification of erythrocytes using digital in-line holographic microscopy and machine learning.
    Go T; Byeon H; Lee SJ
    Biosens Bioelectron; 2018 Apr; 103():12-18. PubMed ID: 29277009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The added value of digital morphological analysis in the evaluation of peripheral blood films: the report of an UKNEQAS external quality assessment sample.
    Rosetti M; De la Salle B; Farneti G; Clementoni A; Poletti G; Dorizzi RM
    Ann Hematol; 2022 Mar; 101(3):729-730. PubMed ID: 34245347
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.