These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Identification and classification of cocci bacterial cells in digital microscopic images. Hiremath PS; Bannigidad P Int J Comput Biol Drug Des; 2011; 4(3):262-73. PubMed ID: 21778559 [TBL] [Abstract][Full Text] [Related]
24. Gel-filtration of sickle erythrocytes: separation based on cell deformability. Baerlocher GM; Meiselman HJ; Reinhart WH Clin Hemorheol Microcirc; 2001; 24(1):11-8. PubMed ID: 11345229 [TBL] [Abstract][Full Text] [Related]
26. Cell shape identification using digital holographic microscopy. Zakrisson J; Schedin S; Andersson M Appl Opt; 2015 Aug; 54(24):7442-8. PubMed ID: 26368783 [TBL] [Abstract][Full Text] [Related]
27. A color and shape based algorithm for segmentation of white blood cells in peripheral blood and bone marrow images. Arslan S; Ozyurek E; Gunduz-Demir C Cytometry A; 2014 Jun; 85(6):480-90. PubMed ID: 24623453 [TBL] [Abstract][Full Text] [Related]
28. An automated method of differential red blood cell classification with application to the diagnosis of anemia. Bacus JW; Weens JH J Histochem Cytochem; 1977 Jul; 25(7):614-32. PubMed ID: 330716 [TBL] [Abstract][Full Text] [Related]
29. Automated system for characterization and classification of malaria-infected stages using light microscopic images of thin blood smears. Das DK; Maiti AK; Chakraborty C J Microsc; 2015 Mar; 257(3):238-52. PubMed ID: 25523795 [TBL] [Abstract][Full Text] [Related]
30. Neural networks and blood cell identification. Micheli-Tzanakou E; Sheikh H; Zhu B J Med Syst; 1997 Aug; 21(4):201-10. PubMed ID: 9442434 [TBL] [Abstract][Full Text] [Related]
31. [Automatic segmentation of the sequential images of neural stem cell based on geometric active contour]. Liu J; Zhao C Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):994-7. PubMed ID: 19024433 [TBL] [Abstract][Full Text] [Related]
32. Differential polarization imaging. III. Theory confirmation. Patterns of polymerization of hemoglobin S in red blood sickle cells. Beach DA; Bustamante C; Wells KS; Foucar KM Biophys J; 1988 Mar; 53(3):449-56. PubMed ID: 3349134 [TBL] [Abstract][Full Text] [Related]
33. Single cell observations of gas reactions and shape changes in normal and sickling erythrocytes. Antonini E; Brunori M; Giardina B; Benedetti PA; Bianchini G; Grassi S Biophys J; 1978 Oct; 24(1):187-95. PubMed ID: 708821 [TBL] [Abstract][Full Text] [Related]
34. New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease. Barodka VM; Nagababu E; Mohanty JG; Nyhan D; Berkowitz DE; Rifkind JM; Strouse JJ Blood Cells Mol Dis; 2014 Apr; 52(4):230-5. PubMed ID: 24246527 [TBL] [Abstract][Full Text] [Related]
35. A new automatic image analysis method for assessing estrogen receptors' status in breast tissue specimens. Mouelhi A; Sayadi M; Fnaiech F; Mrad K; Ben Romdhane K Comput Biol Med; 2013 Dec; 43(12):2263-77. PubMed ID: 24290943 [TBL] [Abstract][Full Text] [Related]
36. Electron microscopic studies of the intracellular polymerization of sickle hemoglobin. Acquaye C; Blanchette-Mackie EJ; Reindorf C; Edelstein S; Schechter AN Blood Cells; 1988; 13(3):359-76. PubMed ID: 3382746 [TBL] [Abstract][Full Text] [Related]
37. Accurate automated quantitative imaging of tortoise erythrocytes using the NIS image analysis system. Walton S; Hofmeyr MD; van der Horst G Biotech Histochem; 2013 Jul; 88(5):242-9. PubMed ID: 23387424 [TBL] [Abstract][Full Text] [Related]
38. Sickling of nucleated erythroid precursors from patients with sickle cell anemia. Hasegawa S; Rodgers GP; Dwyer N; Noguchi CT; Blanchette-Mackie EJ; Uyesaka N; Schechter AN; Fibach E Exp Hematol; 1998 Apr; 26(4):314-9. PubMed ID: 9546314 [TBL] [Abstract][Full Text] [Related]
39. [Transformations of erythrocytes shape and its regulation]. Stasiuk M; Kijanka G; Kozubek A Postepy Biochem; 2009; 55(4):425-33. PubMed ID: 20201356 [TBL] [Abstract][Full Text] [Related]
40. A Dirichlet process mixture model for automatic (18)F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions. Giri MG; Cavedon C; Mazzarotto R; Ferdeghini M Med Phys; 2016 May; 43(5):2491. PubMed ID: 27147360 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]